Answer: The empirical formula is
.
Explanation:
Mass of C = 1.71 g
Mass of H = 0.287 g
Step 1 : convert given masses into moles.
Moles of C = 
Moles of H = 
Step 2 : For the mole ratio, divide each value of moles by the smallest number of moles calculated.
For C =
For H =
The ratio of C: H = 1: 2
Hence the empirical formula is
.
This is true i think if that is a question
Answer:
See explanation
Explanation:
a) The magnitude of intermolecular forces in compounds affects the boiling points of the compound. Neon has London dispersion forces as the only intermolecular forces operating in the substance while HF has dipole dipole interaction and strong hydrogen bonds operating in the molecule hence HF exhibits a much higher boiling point than Ne though they have similar molecular masses.
b) The boiling points of the halogen halides are much higher than that of the noble gases because the halogen halides have much higher molecular masses and stronger intermolecular forces between molecules compared to the noble gases.
Also, the change in boiling point of the hydrogen halides is much more marked(decreases rapidly) due to decrease in the magnitude of hydrogen bonding from HF to HI. The boiling point of the noble gases increases rapidly down the group as the molecular mass of the gases increases.
Answer:
Total partial pressure, Pt = 821 mm Hg
Partial pressure of Helium, P1 = 105 mm Hg
Partial pressure of Nitrogen, P2 = 312 mm Hg
Partial pressure of Oxygen, P3 = ? mm Hg
According to Dalton's law of Partial pressures,
Pt = P1 + P2 + P3
So, <u>P3 = 404 mm Hg</u>
Answer: Transition from X to Y will have greater energy difference.
Explanation: For studying the energy difference, we require Planck's equation.

where, h = Planck's Constant
c = Speed of light
E = Energy
= Wavelength of particle
From the equation, it is visible that the energy and wavelength follow inverse relation which means that with low wavelength value, energy will be the highest and vice-versa.
As electron A falls from X-energy level to Y-energy level, it releases blue light which has low wavelength value (around 470 nm) which means that it has high energy.
Similarly, Electron B releases red light when it falls from Y-energy level to Z-energy level, which has high wavelength value (around 700 nm), giving it a low energy value.
Energy Difference between X-energy level and Y-energy level will be more.