Radio active decay reactions follow first order rate kinetics.
a) The half life and decay constant for radio active decay reactions are related by the equation:



Where k is the decay constant
b) Finding out the decay constant for the decay of C-14 isotope:



c) Finding the age of the sample :
35 % of the radiocarbon is present currently.
The first order rate equation is,
![[A] = [A_{0}]e^{-kt}](https://tex.z-dn.net/?f=%20%5BA%5D%20%3D%20%5BA_%7B0%7D%5De%5E%7B-kt%7D%20%20%20)
![\frac{[A]}{[A_{0}]} = e^{-kt}](https://tex.z-dn.net/?f=%20%5Cfrac%7B%5BA%5D%7D%7B%5BA_%7B0%7D%5D%7D%20%3D%20e%5E%7B-kt%7D%20%20)


t = 7923 years
Therefore, age of the sample is 7923 years.
Answer:
Rb = +1 , Sr = +2, In= +3, Sn = +4, Sb= +5
Explanation:
Formula:
Zeff = Z - S
Z = atomic number
S = number of core shell or inner shell electrons
For Sn:
Electronic configuration:
Sn₅₀ = [Kr] 4d¹⁰ 5s² 5p²
Zeff = Z - S
Zeff = 50 - 46
Zeff = +4
For Rb:
Electronic configuration:
Rb₃₇ = [Kr] 5s¹
Zeff = Z - S
Zeff = 37 - 36
Zeff = +1
For Sb:
Electronic configuration:
Sb₅₁ = [Kr] 4d¹⁰ 5s² 5p³
Zeff = Z - S
Zeff = 51 - 46
Zeff = +5
For In:
Electronic configuration:
In₄₉ = [Kr] 4d¹⁰ 5s² 5p¹
Zeff = Z - S
Zeff = 49 - 46
Zeff = +3
For Sr:
Electronic configuration:
Sr₃₈= [Kr] 5s²
Zeff = Z - S
Zeff = 38 - 36
Zeff = +2