Answer:
v = √ 2e (V₂-V₁) / m
Explanation:
For this exercise we can use the conservation of the energy of the electron
At the highest point. Resting on the top plate
Em₀ = U = -e V₁
At the lowest point. Just before touching the bottom plate
Emf = K + U = ½ m v² - e V₂
Energy is conserved
Em₀ = Emf
-eV₁ = ½ m v² - e V₂
v = √ 2e (V₂-V₁) / m
Where e is the charge of the electron, V₂-V₁ is the potential difference applied to the capacitor and m is the mass of the electron
Atoms and molecules<span> in liquids and gases are bouncing and floating around, free to move where they want. The </span>molecules<span> in a solid are stuck in a specific </span>structure<span> or arrangement of atoms. The atoms still vibrate and the </span>electrons<span> fly around in their </span>orbitals<span>, but the entire atom will not change its </span>position<span>.</span>
I think the correct answer is C
2 mins for sure depending on the distance for walking
Answer:
3.214 m
Explanation:
Here object is moving in a constant acceleration. Then we can use motion equations to find the total distance
V² = U² + 2as
0 = 1.5² + 2×-0.35 × s
s = 3.214 m
symbols has usual meanings.