Answer: There is no question, but we can calculate a couple of items:
Density of sea water sample = (52.987g-44.317g)/8.5ml
Inorganic content of sample (mostly salts) = (44.599g-44.317g)/(52.987g-44.317g) x 100% = percent inorganics in water sample
Explanation:
Answer: 0.9375 g
Explanation:
To calculate the number of moles for given molarity, we use the equation:
.....(1)
Molarity of
solution = 0.75 M
Volume of
solution = 25.0 mL = 0.025 L
Putting values in equation 1, we get:
According to stoichiometry :
2 moles of
require = 1 mole of
Thus 0.01875 moles of
will require=
of
Mass of
Thus 0.9375 g of
is required to react with 25.0 ml of 0.75 M HCl
That would be phosphorus. It’s electron configuration is 1s^2 2s^2 2p^6 3s^2 3p^3
Answer:
<em>The solution with the lowest pH is 0.1 M HCl.</em>
Explanation:
Since the three solutions have the same concentration (0,1M) it is only necessary to look at the pKa of each solution.
Also, knowing that a higher pKa means a lower Ka, because pKa = -Log (Ka). Thus, a lower Ka means a lower concentration of protons with a higher pH ( pH = -Log [H+].
The HCl doesn't have a pKa because is a strong acid that dissociates completely. Therefore, this solution produces a lower pH. Looking at the pKa of acetic acid and formic acid solutions, the second with the lowest pH is the formic acid solutions and the higher pH is for the acetic acid solution.