Answer:
It will always have a zero acceleration
Answer:
Av = 25 [m/s]
Explanation:
To solve this problem we must use the definition of speed, which is defined as the relationship between distance over time. for this case we have.

where:
Av = speed [km/h] or [m/s]
distance = 180 [km]
time = 2 [hr]
Therefore the speed is equal to:
![Av = \frac{180}{2} \\Av = 90 [km/h]](https://tex.z-dn.net/?f=Av%20%3D%20%5Cfrac%7B180%7D%7B2%7D%20%5C%5CAv%20%3D%2090%20%5Bkm%2Fh%5D)
Now we must convert from kilometers per hour to meters per second
![90[\frac{km}{h}]*1000[\frac{m}{1km}]*1[\frac{h}{3600s} ]= 25 [m/s]](https://tex.z-dn.net/?f=90%5B%5Cfrac%7Bkm%7D%7Bh%7D%5D%2A1000%5B%5Cfrac%7Bm%7D%7B1km%7D%5D%2A1%5B%5Cfrac%7Bh%7D%7B3600s%7D%20%5D%3D%2025%20%5Bm%2Fs%5D)
Answer:
3.6 seconds
Explanation:
Given:
y₀ = y = 0 m
v₀ = 31 sin 35° m/s
a = -9.8 m/s²
Find: t
y = y₀ + v₀ t + ½ at²
0 = 0 + (31 sin 35°) t + ½ (-9.8 m/s²) t²
0 = 17.78t − 4.9t²
0 = t (17.78 − 4.9t)
t = 0 or 3.63
Rounded to the nearest tenth, the ball lands after 3.6 seconds.
Answer:
The minimum speed = 
Explanation:
The minimum speed that the rocket must have for it to escape into space is called its escape velocity. If the speed is not attained, the gravitational pull of the planet would pull down the rocket back to its surface. Thus the launch would not be successful.
The minimum speed can be determined by;
Escape velocity = 
where: G is the universal gravitational constant, M is the mass of the planet X, and R is its radius.
If the appropriate values of the variables are substituted into the expression, the value of the minimum speed required can be determined.
Yes, It has a stored energy in that stone.