IBR is the thermal decomposition of iodine(I) bromide to produce iodine and
bromine. This reaction takes place at a temperature of over 40,5°C and is written as:
<span>2IBr ⇄ I2 + Br2
</span>
Equilibrium is a state of dynamic balance where the ratio of the product and reactant concentrations is constant.<span> You can calculate the equilibrium concentration if you know the equilibrium constant Kc (Kc=I^2*Br^2/IBR^2) and the initial concentration for the reaction. The initial concentration is obtained from ICE Table.</span>
Answer:
<h2>480</h2>
Explanation:
<h2>R=120÷0.25</h2><h2>R=480 ohms </h2>
because the unit for resistance is in ohms
Answer:
B. 14.4 N
Rotational speed (Angular Velocity) = 2
The Radius of the circle = 1.2 m
Velocity = Angular velocity × radius = 2×1.2 = 2.4 m/s
Centripetal force= mv²/r = 3 × 2.4×2.4/1.2 = 3 × 2.4 × 2
= 14.4 N
Answer:
<h2>The answer is 5 s</h2>
Explanation:
The time taken can be found by using the formula

d is the distance
v is the velocity
From the question we have

We have the final answer as
<h3>5 s</h3>
Hope this helps you
Answer:
48N
Explanation:
use F=ma, or force is equal to mass multiplied by acceleration.