Answer:
The ball fell 275.625 meters after 7.5 seconds
Explanation:
<u>Free fall
</u>
If an object is left on free air (no friction), it describes an accelerated motion in the vertical direction, powered exclusively by the acceleration of gravity. The formulas needed to compute the different magnitudes involved are


Where
is the final speed of the object in free fall, assumed positive downwards, t is the time elapsed since the release and y is the vertical distance traveled by the object
The ball was dropped from a cliff. We need to calculate the vertical distance the ball went down in t=7.5 seconds. We'll use the formula


Answer:
A. When it is in a magnetic field, it becomes a temporary magnet.
Explanation:
An iron bolt is attracted to a magnet because when in a magnetic field, the iron becomes a temporary magnet.
This is because the iron aligns their electrons in the magnetic fields.
- This causes that attraction between the magnet and the iron.
- Metals like iron are said to be ferromagnetic
- Unpaired electrons in iron spin in such a way that they align with the magnetic fields of the magnet.
Answer:
a= 92. 13 m/s²
Explanation:
Given that
Amplitude ,A= 0.165 m
The maximum speed ,V(max) = 3.9 m/s
We know that maximum velocity in the SHM given as
V(max) = ω A
ω=Angular speed
A=Amplitude

ω=23.63 rad/s
The maximum acceleration given as
a = ω² A
a= (23.63)² x 0.165 m/s²
a= 92. 13 m/s²
Therefore the maximum magnitude of the acceleration will be 92. 13 m/s².
Answer:
The quantity of motion is the measure of the same, arise from the velocity and quantity of matter conjointly. In other words, rather than defining the quantity of motion of a given object as simply the kinematic velocity v of the object, he defined it as the product mv, where m is the mass of the object.
Explanation: