Answer: vector equation r = (7+3t)i + (4+2t)j + (5 - 5t)k
parametric equations: x = 7 + 3t; y = 4 + 2t; z = 5 - 5t
Step-by-step explanation: The vector equation is a line of the form:
r = + t.v
where
is the position vector;
v is the vector;
For point (7,4,5):
= 7i + 4j + 5k
Then, the equation is:
r = 7i + 4j + 5k + t(3i + 2j - k)
<u><em>r = (7 + 3t)</em></u><u><em>i</em></u><u><em> + (4 + 2t)</em></u><u><em>j </em></u><u><em>+ (5 - 5t)</em></u><u><em>k</em></u>
The parametric equations of the line are of the form:
x = + at
y = + bt
z = + ct
So, the parametric equations are:
<em><u>x = 7 + 3t</u></em>
<em><u>y = 4 + 2t</u></em>
<em><u>z = 5 - 5t</u></em>
The answer is
8x^4-10x^3-3x^2
Pythagorean theorem - a^2 + b^2 = c^2
2^2+3^2 = d^2
d^2 = 13
d= square root of 13
Answer:
a) x > − 24
b) x < − 3
c) q < 56
Step-by-step explanation:
a) −2/5x−9<9/10
<=> 2/5x + 9 > − 9/10
<=> 2/5x > − 9/10 − 9
<=> 2×2/2×5x > − 9/10 − 9×10/10
<=> 4/10x > − 99/10
<=> x > − 99/4
<=> x > − 24
b) 4x+6<−6
<=> 4x < − 6 − 6
<=> 4x < − 12
<=> x < − 12/4
<=> x < − 3
c) q+12−2(q−22)>0
<=> q+12−2q −2×(−22)>0
<=> (q−2q) + (12+ 44) >0
<=> −q + 56 >0
<=> q < 56
Answer:
Step-by-step explanation:
Given
Required
Determine the mass of the vehicle
This question will be answered using Newton's second law
Substitute values for Force and Acceleration
Make Mass the subject
---- approximated
<em>Hence, the mass of the vehicle is 1867kg</em>