Answer:
ΔH°r = -483.64 kJ
Explanation:
Let's consider the following balanced equation.
2 H₂(g) + O₂(g) ⇒ 2 H₂O(g)
We can calculate the standard enthalpy change of the reaction (ΔH°r) using the following expression.
ΔH°r = ∑ΔH°f(p) × np - ∑ΔH°f(r) × nr
where
ΔH°f: standard heat of formation
n: moles
p: products
r: reactants
ΔH°r = ΔH°f(H₂O(g)) × 2 mol - ΔH°f(H₂(g)) × 2 mol - ΔH°f(O₂(g)) × 1 mol
ΔH°r = (-241.82 kJ/mol) × 2 mol - 0 kJ/mol × 2 mol - 0 kJ/mol × 1 mol
ΔH°r = -483.64 kJ
Answer:
The molar solubility of lead bromide at 298K is 0.010 mol/L.
Explanation:
In order to solve this problem, we need to use the Nernst Equaiton:
![E = E^{o} - \frac{0.0591}{n} log\frac{[ox]}{[red]}](https://tex.z-dn.net/?f=E%20%3D%20E%5E%7Bo%7D%20-%20%5Cfrac%7B0.0591%7D%7Bn%7D%20log%5Cfrac%7B%5Box%5D%7D%7B%5Bred%5D%7D)
E is the cell potential at a certain instant, E⁰ is the cell potential, n is the number of electrons involved in the redox reaction, [ox] is the concentration of the oxidated specie and [red] is the concentration of the reduced specie.
At equilibrium, E = 0, therefore:
![E^{o} = \frac{0.0591}{n} log \frac{[ox]}{[red]} \\\\log \frac{[ox]}{[red]} = \frac{nE^{o} }{0.0591} \\\\log[red] = log[ox] - \frac{nE^{o} }{0.0591}\\\\[red] = 10^{ log[ox] - \frac{nE^{o} }{0.0591}} \\\\[red] = 10^{ log0.733 - \frac{2x5.45x10^{-2} }{0.0591}}\\\\](https://tex.z-dn.net/?f=E%5E%7Bo%7D%20%20%3D%20%5Cfrac%7B0.0591%7D%7Bn%7D%20log%20%5Cfrac%7B%5Box%5D%7D%7B%5Bred%5D%7D%20%5C%5C%5C%5Clog%20%5Cfrac%7B%5Box%5D%7D%7B%5Bred%5D%7D%20%3D%20%5Cfrac%7BnE%5E%7Bo%7D%20%7D%7B0.0591%7D%20%5C%5C%5C%5Clog%5Bred%5D%20%3D%20%20log%5Box%5D%20-%20%20%5Cfrac%7BnE%5E%7Bo%7D%20%7D%7B0.0591%7D%5C%5C%5C%5C%5Bred%5D%20%3D%2010%5E%7B%20log%5Box%5D%20-%20%20%5Cfrac%7BnE%5E%7Bo%7D%20%7D%7B0.0591%7D%7D%20%5C%5C%5C%5C%5Bred%5D%20%3D%2010%5E%7B%20log0.733%20-%20%20%5Cfrac%7B2x5.45x10%5E%7B-2%7D%20%20%7D%7B0.0591%7D%7D%5C%5C%5C%5C)
[red] = 0.010 M
The reduction will happen in the anode, therefore, the concentration of the reduced specie is equivalent to the molar solubility of lead bromide.
Answer is alpha particles
Answer:
Lead
Explanation:
The subatomic particles within an atom can be used to know the atom or element given.
Of particular interest is the number of protons within the atom.
The periodic table is based on the atomic number of atoms. This atomic number is the number of protons within an atomic space.
So; If we know the number of protons within an atom, we can know the element.
The number of protons given is 82, the element is therefore lead.