This being a perfect collision means no energy is lost during the collision. Because this question asks for speed and not velocity, the speed will be the same because the final energy is the same. The speed after the collision would therefore be 1.27 m/s.
So, option 3 or the ambulance sound waves have more waves and shorter wavelength is the correct reason for ambulance siren having higher pitch compared to fire truck siren
Explanation:
Pitch of any sound wave is determined as the clarity in frequency of notes or the number of times a cycle is repeated for a single second. So pitch is similar to frequency. And frequency is the measure of number of complete cycles in a second. So if the ambulance siren has higher pitch compared to siren of fire truck. Then this means the frequency of ambulance siren is greater than the fire truck siren. As the frequency is more, then from the given options, choice 3 is correct. The ambulance siren have more waves and shorter wavelength. As more the frequency or number of waves, lesser or shorter is the wavelength of sound wave from ambulance.
Answer:
v= 1495.04 m/s
Explanation:
The formula for velocity of sound is given by ;
v= fλ --------where
v= velocity of sound
f= frequency of turning fork
λ = wavelength
However,
Δ L = 1/2 λ ------where Δ L is spacing between resonances.
1.46 = 1/2 λ
1.46 * 2 = λ
2.92 m = λ
v= fλ
v= 512 * 2.92
v= 1495.04 m/s
Well im not sure if this is the correct dating materials but here are some examples of Fundamentals of radiometric dating<span>Radioactive decay.
Accuracy of radiometric dating.
Closure temperature.
The age equation.
Uranium–lead dating method.
Samarium–neodymium dating method.
Potassium–argon dating method.
<span>Rubidium–strontium dating method.</span></span>