Answer:
31.321 rad/s
Explanation:
L = Tube length
A = Area of tube
= Density of fluid
v = Fluid velocity
m = Mass = 
Centripetal force is given by

Pressure is given by

The angular speed of the tube is 31.321 rad/s
Force applied causes
deformation in the object. It changes the relative positions of
constituent particles in the crystal lattice.
As soon as that happens, the interatomic or intermolecular forces come
into play and they, tend to restore the solid back to it's original
shape.
This restoring force per unit area is called Stress . When external forces are removed, the internal forces tend to restore the solid back.
This property is called Elasticity .
However, no material is perfectly elastic and what happens is that, the body is not able to restore itself completely.
Answer:
Its traveling in the +x direction
Explanation:
The E-field is in the +y-direction, and the B-field is in the +z-direction, so it must be moving along the +x-direction, since the E-field, B-field and the direction of moving are all at right angles to each other.
Answer:
B) 20N.s is the correct answer
Explanation:
The formula for the impulse is given as:
Impulse = change in momentum
Impulse = mass × change in speed
Impulse = m × ΔV
Given:
initial speed = 40m/s
Final speed = -60 m/s (Since the the ball will now move in the opposite direction after hitting the bat, the speed is negative)
mass = 0.20 kg
Thus, we have
Impulse = 0.20 × (40m/s - (-60)m/s)
Impulse = 0.20 × 100 = 20 kg-m/s or 20 N.s