It should be 12 N. the force of the book on the table should be the same as the force of the table on the book.
The vertical component of the initial velocity is 
The horizontal component of the initial velocity is 
The horizontal displacement when the object reaches maximum height is 
The given parameters;
the horizontal displacement of the object, = x
the vertical displacement of the object, = y
acceleration due to gravity, = g
time of motion, = t
The vertical component of the initial velocity is given as;

The horizontal component of the initial velocity is calculated as;

The time to reach to the maximum height is calculated as;

The horizontal displacement when the object reaches maximum height is calculated as;

Learn more here: brainly.com/question/20689870
The answer is point b because vertical velocity is zero at the maximum height
The maximum value of θ of such the ropes (with a maximum tension of 5,479 N) will be able to support the beam without snapping is:

We can apply the first Newton's law in x and y-direction.
If we do a free body diagram of the system we will have:
x-direction
All the forces acting in this direction are:
(1)
Where:
- T(1) is the tension due to the rope 1
- T(2) is the tension due to the rope 2
Here we just conclude that T(1) = T(2)
y-direction
The forces in this direction are:
(2)
Here W is the weight of the steel beam.
We equal it to zero because we need to find the maximum angle at which the ropes will be able to support the beam without snapping.
Knowing that T(1) = T(2) and W = mg, we have:



T(1) must be equal to 5479 N, so we have:


Therefore, the maximum angle allowed is θ = 37.01°.
You can learn more about tension here:
brainly.com/question/12797227
I hope it helps you!
Answer:
The frictional force needed to overcome the cart is 4.83N
Explanation:
The frictional force can be obtained using the following formula:

where
is the coefficient of friction = 0.02
R = Normal reaction of the load =
=
= 
Now that we have the necessary parameters that we can place into the equation, we can now go ahead and make our substitutions, to get the value of F.

F = 4.83 N
Hence, the frictional force needed to overcome the cart is 4.83N