Answer: 0.0180701 s
Explanation:
Given the following :
Length of string (L) = 10 m
Weight of string (W) = 0.32 N
Weight attached to lower end = 1kN = 1×10^3
Using the relation:
Time (t) = √ (weight of string * Length) / weight attached to lower end * acceleration due to gravity
g = acceleration due to gravity = 9.8m/s^2
Weight of string = 0.32N
Time(t) = √ (0.32 * 10) / [(1*10^3) * (9.8)]
Time = √3.2 / 9800
= √0.0003265
= 0.0180701s
Answer:
Explanation:
As per energy conservation we know that the electrostatic potential energy of the charge system is equal to the initial kinetic energy of the alpha particle
So here we can write it as
now we know that
z = 79
here kinetic energy of the incident alpha particle is given as
now we have
now we have
Answer:
speed = distance/time
Explanation:
speed = 150/30
speed =5m/s
you were running fast .....5m/s is a good speed
Answer:
The final velocity of the object is, = 27 m/s
Explanation:
Given,
The acceleration of the object, a = 1000 m/s²
The initial displacement of the object, = 0 m
The final displacement of the object, = 0.75 m
The initial velocity of the object will be, = o m/s
The final velocity of the object, = ?
The average velocity of the object,
v = ( - )/ t
= 0.75 / t
The acceleration is given by the relation
a = v / t
1000 m/s² = 0.75 / t²
t² = 7.5 x 10⁻⁴
t = 0.027 s
Using the I equation of motion,
= u + at
Substituting the values
= 0 + 1000 x 0.027
= 27 m/s
Hence, the final velocity of the object is, = 27 m/s