The answer is Stay In Place
<h2>The gravitational potential energy is double for stone with twice the mass of other stone.</h2>
Explanation:
Let mass of stone 1 be m.
Mass of stone 2 is twice the mass of stone 1.
Mass of stone 2 = 2m
We know that
Gravitational potential energy = Mass x acceleration due to gravity x Height
PE = mgh
For stone 1 ,
PE₁ = mgh
For stone 2 ,
PE₂ = 2mgh = 2 PE₁
So the gravitational potential energy is double for stone with twice the mass of other stone.
T = 0.017 s
From the foot to the brain is almost the same as the height. We are not given the height of the woman, but to find "about" how much time, we need a height to work with.
She *could* be 1.7 m <- height = distance
Formula for speed, where k = speed, d = distance, t = time
k = d/t
Rearrange to solve for time:
t = d/k
Substitute known values:
t = (1.7 m) / (100 m/s)
Solve:
t = 0.017 s
Therefore, it takes about 0.017s for the impulse to travel from the foot to the brain.
Answer:
1000 N
Explanation:
The magnitude of the electrostatic force between two charged object is given by

where
k is the Coulomb constant
q1, q2 is the magnitude of the two charges
r is the distance between the two objects
Moreover, the force is:
- Attractive if the two forces have opposite sign
- Repulsive if the two forces have same sign
In this problem:
are the two charges
r = 3000 m is their separation
Therefore, the electric force between the charges is:

Use the conservation of angular momentum; angular momentum at the beginning = angular momentum at the end
Conservation of angular momentum:
I1 w1 = I2 w2
Where I is the moment of inertia. For a sphere, I=2/5 m R^2. Substituting into the equation above we get
w2 = I1 w1 / I2 = w1 m1 R1^2 / (m2 R2^2)
w2 = w1 4 * (R1/R2)^2
= 4*(1)*(7E5/7.5)^2
= 3.48E10 revs/(17days)
= 2.04705882 x 10^9 revs/sec