Answer:
See explanation below
Explanation:
In this case, we can use the Boyle's law. Assuming that the temperature of both trial remains constant, then:
P₁V₁ = P₂V₂ (1)
You should note that this expression is usable when you are dealing with gases. However, we can treat this unknown liquid as a gas, because all the air on the flask is removed, and we can assume that the liquid can behave like an ideal gas.
So using the above expression, we can solve for P₂:
P₂ = P₁V₁ / V₂ (2)
In this case, we already have the values of presures and volume, so replacing in this expression:
P₂ = 34.5 * 5 / 214
<h2>
P₂ = 0.806 kPa</h2>
This should be the pressure of the liquid.
Hope this helps
Answer:
The answer is transition metals
Explanation:
Answer:
Option-B (k) is the correct answer.
Explanation:
As we know the rate of reaction is given as;
Rate = k [A]ˣ
Where;
Rate = Rate of Reaction
k = rate constant
[ ] = concentration of A
x = order of reaction
So, from this equation we found that rate of reaction depends upon concentration and rate constant (k).
Now,
The rate constant is as follow,,
k = Ae^(Ea/RT)
This equation is known as Arrhenius Equation, according to this equation rate constant depends upon Temperature and Activation energy. Greater the temperature greater is the rate constant and hence greater is the rate of reaction. Or smaller the activation energy greater is the rate constant and vice versa.
Answer:
D
Explanation:
Solid, Liquid and Gas are the states of matter. Light is neither a solid, a liquid, nor a gas.
They are heated by the sun. Good luck :)