Answer:
1.4 × 10^-4.
Explanation:
C3H6O3 + H2O <======> C3H5O3^- + H3O^+ ------------------------------------------(1).
So, from the question above we are given the following parameters or data which is going to help in solving this particular Question/problem;
=>concentration of the solution of lactic acid (CH3CH(OH)C00H) = 0.1 M and pH = 2.44.
Therefore, the concentration of the hydrogen ion[H^+} can be determined from the pH formula given below;
pH = - log { H^+}.
2.44 = - log { H^+}.
Therefore, {H^+} = 0.0036 M.
From the equation (1) given above, we have that the ratio for the equilibrium reaction is 1 : 1 : 1 :1. Therefore, molarity of C3H5O3^- = 0.0036 M and the molarity of C3H6O3 =( 0.1 - 0.0036 M) = 0.0964 M at equilibrium.
Hence, ka = {C3H5O3^-} { H3O^+} /{C3H6O3} = ( 0.0036 M)^2 /(0.0964 M) = 1.4 × 10^-4.
Answer:
How do you find the density of a liquid experiment?
To measure the density of a liquid you do the same thing you would for a solid. Mass the fluid, find its volume, and divide mass by volume. To mass the fluid, weigh it in a container, pour it out, weigh the empty container, and subtract the mass of the empty container from the full container.
Surface tension under water results from greater attraction of liquid molecules to each other, due to a process called cohesion, than to molecules in the air, due to a process called adhesion.
Answer:
Ionic
Explanation:
Mg has 2 electron in it's outermost orbit, by donating this two electron to Sulfur it get stable mg 2+ electronic configuration while sulfur has 6 electron in it's outermost shell ,so sulfur accept this 2 electron and complete it's octet and become s2–.