Answer:
487.33 K.
Explanation:
- To calculate the no. of moles of a gas, we can use the general law of ideal gas: <em>PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant.
T is the temperature of the gas in K.
- If n is constant, and have two different values of (P, V and T):
<em>P₁V₁T₂ = P₂V₂T₁</em>
<em></em>
P₁ = 5.4 atm, V₁ = 1.0 L, T₁ = 33°C + 273 = 306 K.
P₂ = 4.3 atm, V₂ = 2.0 L, T₂ =??? K.
<em>∴ T₂ = P₂V₂T₁/P₁V₁</em> = (4.3 atm)(2.0 L)(306 K)/(5.4 atm)(1.0 L) = <em>487.33 K.</em>
Answer:
11.35 g/cm³
Explanation:
If your rounding then 11.4. hope this helps :)
Answer:
The answer is: (a) positive; (b) negative.
Explanation:
The change in enthalpy (ΔH) of a reaction is the amount of energy absorbed or released during a chemical reaction carried out at constant pressure.
a) In an endothermic chemical reaction, heat energy is absorbed by the system from the surrounding. Therefore, the sign of enthalpy change for an endothermic process is positive, ΔH= positive.
b) In an exothermic chemical reaction, heat energy is released by the system into the surrounding. Therefore, the sign of enthalpy change for an exothermic process is negative, ΔH= negative.
<span>Factors that affect biodiversity in an ecosystem include area,climate,diversity of niches,and keystone species.</span><span />