At that point it is no longer trying to uncompress nor is it trying to stretch. This is the same thing as a pendulum at the bottom of its swing, no longer falling but not yet rising against gravity. Thus the kinetic energy there is the same as the potential energy when it is compressed. The energy of compression is

This gives E=0.5(37)(0.2)²=
0.74JThis is the same as the kinetic energy when it is at natural length
help me w mine and ill try to help with yours
Suvat
we have s, u, v and we want a
the suvat equation with these values in is: v^2 = u^2 - 2as
so a = (-v^2 + u^2)/-2s
plug numbers in
a = (-85^2 + 0^2)/-2*36 = 7225/72 = 100.3... ms^-2
Thomas Edison is the answer im 100% sure of it.
I don't know how good you are at sketching ... I'm terrible.
But you can put the point across in a dramatic way if you
can sketch a bowling ball and a basketball ... you'll need
to clearly identify them with the markings you sketch on
each ball.
They're the same shape and nearly the same size, but
there's a huge difference in their densities.