Answer:
Optimists generally approach life with a positive outlook, while pessimists tend to expect the worst. Optimists go into new situations with high expectations, while pessimists keep low expectations to prepare for negative outcomes
Explanation: Optimists generally approach life with a positive outlook, while pessimists tend to expect the worst. Optimists go into new situations with high expectations, while pessimists keep low expectations to prepare for negative outcomes
The 78g box, since it has less weight, would accelerate faster. If you had a frictionless surface, and you conducted this experiment, both boxes, without any outside forces, would accelerate at the same rate forever. However, in this problem we must assume the surface is not frictionless. Friction is determined by weight; the more weight, the more friction. Since the 78g box has less weight, it has less friction, making it easier to push with less force.
Answer:
a) E = 0
b) ![E = \dfrac{k_e \cdot q}{ r^2 }](https://tex.z-dn.net/?f=E%20%3D%20%20%5Cdfrac%7Bk_e%20%5Ccdot%20q%7D%7B%20r%5E2%20%7D)
Explanation:
The electric field for all points outside the spherical shell is given as follows;
a) ![\phi_E = \oint E \cdot dA = \dfrac{\Sigma q_{enclosed}}{\varepsilon _{0}}](https://tex.z-dn.net/?f=%5Cphi_E%20%3D%20%5Coint%20E%20%5Ccdot%20%20dA%20%3D%20%20%5Cdfrac%7B%5CSigma%20q_%7Benclosed%7D%7D%7B%5Cvarepsilon%20_%7B0%7D%7D)
From which we have;
![E \cdot A = \dfrac{{\Sigma Q}}{\varepsilon _{0}} = \dfrac{+q + (-q)}{\varepsilon _{0}} = \dfrac{0}{\varepsilon _{0}} = 0](https://tex.z-dn.net/?f=E%20%5Ccdot%20%20A%20%3D%20%20%5Cdfrac%7B%7B%5CSigma%20Q%7D%7D%7B%5Cvarepsilon%20_%7B0%7D%7D%20%3D%20%5Cdfrac%7B%2Bq%20%2B%20%28-q%29%7D%7B%5Cvarepsilon%20_%7B0%7D%7D%20%20%3D%20%5Cdfrac%7B0%7D%7B%5Cvarepsilon%20_%7B0%7D%7D%20%3D%200)
E = 0/A = 0
E = 0
b) ![\phi_E = \oint E \cdot dA = \dfrac{\Sigma q_{enclosed}}{\varepsilon _{0}}](https://tex.z-dn.net/?f=%5Cphi_E%20%3D%20%5Coint%20E%20%5Ccdot%20%20dA%20%3D%20%20%5Cdfrac%7B%5CSigma%20q_%7Benclosed%7D%7D%7B%5Cvarepsilon%20_%7B0%7D%7D)
![E \cdot A = \dfrac{+q }{\varepsilon _{0}}](https://tex.z-dn.net/?f=E%20%5Ccdot%20%20A%20%20%3D%20%5Cdfrac%7B%2Bq%20%7D%7B%5Cvarepsilon%20_%7B0%7D%7D)
![E = \dfrac{+q }{\varepsilon _{0} \cdot A} = \dfrac{+q }{\varepsilon _{0} \cdot 4 \cdot \pi \cdot r^2}](https://tex.z-dn.net/?f=E%20%20%3D%20%5Cdfrac%7B%2Bq%20%7D%7B%5Cvarepsilon%20_%7B0%7D%20%5Ccdot%20A%7D%20%3D%20%5Cdfrac%7B%2Bq%20%7D%7B%5Cvarepsilon%20_%7B0%7D%20%5Ccdot%204%20%5Ccdot%20%5Cpi%20%5Ccdot%20r%5E2%7D)
By Gauss theorem, we have;
![E\oint dS = \dfrac{q}{\varepsilon _{0}}](https://tex.z-dn.net/?f=E%5Coint%20dS%20%3D%20%20%5Cdfrac%7Bq%7D%7B%5Cvarepsilon%20_%7B0%7D%7D)
Therefore, we get;
![E \cdot (4 \cdot \pi \cdot r^2) = \dfrac{q}{\varepsilon _{0}}](https://tex.z-dn.net/?f=E%20%5Ccdot%20%284%20%5Ccdot%20%5Cpi%20%5Ccdot%20r%5E2%29%20%3D%20%20%5Cdfrac%7Bq%7D%7B%5Cvarepsilon%20_%7B0%7D%7D)
The electrical field outside the spherical shell
![E = \dfrac{q}{\varepsilon _{0} \cdot (4 \cdot \pi \cdot r^2) }= \dfrac{q}{4 \cdot \pi \cdot \varepsilon _{0} \cdot r^2 }= \dfrac{q}{(4 \cdot \pi \cdot \varepsilon _{0} )\cdot r^2 }](https://tex.z-dn.net/?f=E%20%3D%20%20%5Cdfrac%7Bq%7D%7B%5Cvarepsilon%20_%7B0%7D%20%5Ccdot%20%284%20%5Ccdot%20%5Cpi%20%5Ccdot%20r%5E2%29%20%7D%3D%20%5Cdfrac%7Bq%7D%7B4%20%5Ccdot%20%5Cpi%20%5Ccdot%20%5Cvarepsilon%20_%7B0%7D%20%5Ccdot%20r%5E2%20%7D%3D%20%20%5Cdfrac%7Bq%7D%7B%284%20%5Ccdot%20%5Cpi%20%5Ccdot%20%5Cvarepsilon%20_%7B0%7D%20%29%5Ccdot%20r%5E2%20%7D)
![k_e= \dfrac{1}{(4 \cdot \pi \cdot \varepsilon _{0} ) }](https://tex.z-dn.net/?f=k_e%3D%20%20%5Cdfrac%7B1%7D%7B%284%20%5Ccdot%20%5Cpi%20%5Ccdot%20%5Cvarepsilon%20_%7B0%7D%20%29%20%7D)
Therefore, we have;
![E = \dfrac{k_e \cdot q}{ r^2 }](https://tex.z-dn.net/?f=E%20%3D%20%20%5Cdfrac%7Bk_e%20%5Ccdot%20q%7D%7B%20r%5E2%20%7D)
Answer:
I. a, c, f and h
II. e
III. b, d, g and i
IV. i
Explanation:
I. Chemical symbols are simple abbreviations used to represent various elements or compound. They consist entire of alphabet.
For the diagram given above, the labelled parts which represent chemical symbol are: a, c, f and h
II. Coefficients are numbers written before the chemical symbol of elements or compound.
For the diagram given above, the labelled part which represent Coefficient is: e
III. Number of atoms of element present in a compound is simply obtained by taking note of the numbers written as subscript in the chemical formula of the compound.
For the diagram given above, the labelled part which represent the number of atoms of the element are: b, d, g and i
IV. When no number is written as subscript in the formula of the element in the compound, it means the element has just 1 atom in the compound.
For the diagram given above, the labelled part which indicates that only 1 atom of the element is present is: i
The formula for the density of a substance expressed in mass and volume is rho = mass/volume or p = m/v. Rearranging the formula to isolate volume gives the formula v = m/p. To solve for the problem given, this formula must be used. This gives a solution of:
v = m/p = 250 g/ 968 g/cm^3 = 0.258 cm^3 of sodium