The equation for potential energy is denoted as;
Pe = mgh,
where m = the mass, g = acceleration due to gravity, and h = vertical height of the apple. We are given the units for everything but height, which is also what we are solving for. We can then algebraically rearrange our initial equation to solve for h;
h = (Pe)/(mg)
Plug in your given units, and solve!
Post-check:
h = Pe/mg
h = 175J/(0.36g)(-9.81m/s^2)
h = appr. 49.5 meters
Note: Potential energy is a vector quantity; the displacement of the apple will be a negative number, but the distance itself, a scalar quantity, will be the absolute value of that.
Answer
= 60
Hope it helps:)
Answer: 16.3 seconds
Explanation: Given that the
Initial velocity U = 80 ft/s
Let's first calculate the maximum height reached by using third equation of motion.
V^2 = U^2 - 2gH
Where V = final velocity and H = maximum height.
Since the toy is moving against the gravity, g will be negative.
At maximum height, V = 0
0 = 80^2 - 2 × 9.81 × H
6400 = 19.62H
H = 6400/19.62
H = 326.2
Let's us second equation of motion to find time.
H = Ut - 1/2gt^2
Let assume that the ball is dropped from the maximum height. Then,
U = 0. The equation will be reduced to
H = 1/2gt^2
326.2 = 1/2 × 9.81 × t^2
326.2 = 4.905t^2
t^2 = 326.2/4.905
t = sqrt( 66.5 )
t = 8.15 seconds
The time it will take for the rocket to return to ground level will be 2t.
That is, 2 × 8.15 = 16.3 seconds
Answer:
the earth is flat, the stars control human life, the planets revolve around the earth
Explanation: