Answer:

Explanation:
From the question we are told that
The wavelength is 
The length of the of the plate is 
The radius of the wire is 
Generally the diameter of the wire which is the distance between the glass plates is mathematically represented as

=> 
=> 
Generally the condition for constructive interference is mathematically represented as

=> 
=> 
=> 
Answer:
1.5 u
Explanation:
The range equation is:
R = u² sin(2θ) / g
When u = v, R = 2.25 R.
2.25 R = v² sin(2θ) / g
2.25 u² sin(2θ) / g = v² sin(2θ) / g
2.25 u² = v²
1.5 u = v
Answer:

is the no. of electrons
Explanation:
Given:
- quantity of charge transferred,

<u>No. of electrons in the given amount of charge:</u>
As we have charge on one electron 
so,


is the no. of electrons
- Now if each water molecules donates one electron:
Then we require
molecules.
<u>Now the no. of moles in this many molecules:</u>

where
Avogadro No.


- We have molecular mass of water as M=18 g/mol.
<u>So, the mass of water in the obtained moles:</u>

where:
m = mass in gram


Answer:
The entropy change of the sample of water = 6.059 x 10³ J/K.mol
Explanation:
Entropy: Entropy can be defined as the measure of the degree of disorder or randomness of a substance. The S.I unit of Entropy is J/K.mol
Mathematically, entropy is expressed as
ΔS = ΔH/T....................... Equation 1
Where ΔH = heat absorbed or evolved, T = absolute temperature.
<em>Given: If 1 mole of water = 0.0018 kg,</em>
<em>ΔH = latent heat × mass = 2.26 x 10⁶ × 1 = 2.26x 10⁶ J.</em>
<em>T = 100 °C = (100+273) K = 373 K.</em>
<em>Substituting these values into equation 1,</em>
<em>ΔS =2.26x 10⁶/373</em>
ΔS = 6.059 x 10³ J/K.mol
Therefore the entropy change of the sample of water = 6.059 x 10³ J/K.mol