Answer:
The volume of solution in liters required to make a 0.250 M solution from 3.52 moles of solute is 14.08 liters of solution
Explanation:
The question relates to the definition of the concentration of a solution which is the number of moles per liter (1 liter = 1 dm³) of solution
Therefore we have;
The concentration of the intended solution = 0.250 M
Therefore, the number of moles per liter of the required resolution = 0.250 moles
Therefore, the concentration of the required solution = 0.250 moles/liter
The volume in liters of the required solution that will have 3.52 moles of the solute is given as follows;
The required volume of solution = The number of moles of the solute/(The concentration of the solution)
∴ The required volume of solution = 3.52 moles/(0.250 moles/liter) = 14.08 liters
The required volume of solution to make a 0.250 M solution from 3.52 moles of solute = 14.08 liters.
Therefore the number of liters required to make a 0.250 M solution from 3.52 moles of solute = 14.08 liters.
1 Cal ---------- 4.184 J
? Cal ---------- 130.0 J
130.0 x 1 / 4.184 => 31.07 Cal
hope this helps!
Answer:
extensive hydrogen bonding
Explanation:
The high boiling points of water, hydrogen fluoride (HF) and ammonia (NH3) is an effect of the extensive hydrogen bonding between the molecules. The London dispersion force is caused by random and temporary changes in the polarity of atoms, caused by the location of the electrons in the atoms' orbitals.
Hope this helps :)
Answer:
(D) (CH3CH2)2NH
Explanation:
In order to decide which base is strongest we need to calculate its PKb
PKb = -log [Kb]
A large Kb value and small PKb value gives the strongest base
Compound Kb PKb
(A) C6H5NH2 - 4 x 10^-10 9.349
(B) NH3 1.76x 10^-5 4.754
(C) CH3NH2 4.4x 10^-4 3.357
(D) (CH3CH2)2NH 8.6x 10^-4 3.066
(E) C5H5N 1.7x10^-9 8.77
Clearly (CH3CH2)2NH is the strongest base.