The same number of protons. brainliest?(:
Blood flows through the major artery at 1 m/s for 0.5 m then at a 0.6 m/s over a distance of another 0.5 m through the small artery the average speed of blood is 0.4 m/s.
We know that average speed =
=0.4 m/s
Average speed is an important component in determining how long it takes to finish a journey. Average speed is simply a technique that assists us in calculating trip time and distance. It is obvious that the speed changes throughout the travel, making determining the average speed even more critical.
There are various methods for determining an object's or vehicle's average speed.
It is most desired when the speed of the object remains constant during the voyage, i.e. does not rise or decrease.
The approach for determining the average Speed is to divide. Divide the distance the vehicle travels by the time it travels to get the result.
Learn more about average speed brainly.com/question/12322912
#SPJ9
The first positively essential requirement is that
you absolutely have to know what 'a' and 'b' are.
I have no clue, so this is as far as I can go.
Answer:
<h2>Case i) if

</h2><h2>So initially if the circuit is inductive in nature then its net impedance will decrease after this</h2><h2>Case ii) if

</h2><h2>So initially if the circuit is capacitive in nature then its net impedance will increase after this</h2>
Explanation:
As we know that the impedance of the circuit is given as

when we join another identical capacitor in parallel with previous capacitor in the circuit then we will have for parallel combination

so it is

now we have

Case i) if 
So initially if the circuit is inductive in nature then its net impedance will decrease after this
Case ii) if 
So initially if the circuit is capacitive in nature then its net impedance will increase after this
Answer:
c=0.14J/gC
Explanation:
A.
2) The specific heat will be the same because it is a property of the substance and does not depend on the medium.
B.
We can use the expression for heat transmission

In this case the heat given by the metal (which is at a higher temperature) is equal to that gained by the water, that is to say

for water we have to
c = 4.18J / g ° C
replacing we have

I hope this is useful for you
A.
2) El calor específico será igual porque es una propiedad de la sustancia y no depende del medio.
B.
Podemos usar la expresión para la transmisión de calor

En este caso el calor cedido por el metal (que está a mayor temperatura) es igual al ganado por el agua, es decir

para el agua tenemos que
c=4.18J/g°C
reemplazando tenemos
