It will take 267 milliseconds for a sample of radon-218 to decay from 99 grams to 0. 50 grams.
We know that half life of a first order reaction is given by: 
where k = rate of reaction
Given half life = 35 milliseconds
So from this we get k = 0.0198
Now we know that rate of first order reaction is given by: 
where t= time
R'= initial amount = 99 g
R= final amount= 0.50 g
k= rate of reaction = 0.0198
Putting values of these in above equation we get t=267 milliseconds.
i.e. It will take 267 milliseconds for a sample of radon-218 to decay from 99 grams to 0. 50 grams.
To know more about radioactivity visit:
brainly.com/question/20039004
#SPJ4
Answer:
The speeding up is steady, it is a parabola (a=V*t+(at^2)/2), and give it's an equation in connection to time, at that point, it is conceivable to discover the separation recipe by utilizing more substantial amount mathematics(integrals).
Explanation:
<span>U could compare them using the intensity
technique when bending waves are negligible in comparison with
quasi-longitudinal waves.</span>
The building sector plays a large role in the energy consumption which includes space heating or cooling, domestic hot water and electricity. Buildings with their long lifespan and huge amount of already existing buildings, makes revision in energy characteristics of a building constrained.