Answer:
Newton's law of cooling says that the temperature of a body changes at a rate proportional to the difference between its temperature and that of the surrounding medium (the ambient temperature); dT/dt = -K(T - Tₐ) where T = the temperature of the body (°C), t = time (min), k = the proportionality constant (per minute),
Explanation:
Answer:
Check the explanation
Explanation:
The escape velocity is the velocity needed by any object to overcome the gravitational force of the planet on which it’s present. Now we know that the gravitational force is directly proportional to the mass of the planet and inversely proportional to the distance of the object from the center of planet.
If we keep the mass of earth constant and decrease the size of the earth than this will decrease the distance between the object and the center of the earth and thus the gravitational force that will act on the body will increase substantially which will in turn increase the value of the escape velocity.
The value of escape velocity will keep on increasing as the size of the earth will shrink till it reaches to a point when the value of escape velocity becomes more than the speed of light and since it’s impossible to travel with a speed greater than the speed of light and therefore at this point it will become impossible for a spacecraft to escape the earth.
Answer:
Explanation:
We shall apply work energy theorem to calculate the initial velocity just after the collision .
Their kinetic energy will be equal to work done by friction .
force of friction = μ mg , where μ is coefficient of friction , m is total mass and g is acceleration due to gravity
force = .463 x 3210 x 9.8
= 14565.05 N
work done = force x displacement
= 14565.05 x 14.54 = 211775.88 J
now applying work energy theorem
1/2 m v² = 211775.88 , m is composite mass , v is velocity just after the collision
.5 x 3210 x v² = 211775.88
v² = 131.94
v 11.48 m /s
The magnetic field on the sun is created by <u>flowing charged plasma</u> a liquid iron core flowing charged plasma friction iron in the solar wind.
Plasma, a gas-like state of matter in which electrons and ions have separated to produce a very hot mixture of charged particles, makes up the sun. Magnetic fields are naturally produced as charged particles move, and these fields have an additional impact on the motion of the particles.
Because the magnetic fields above the surface of the sun direct the travel of that plasma and cause the loops and towers of material in the corona to shine brilliantly in EUV photos, we can see the shape of the magnetic fields there.
Learn more about Magnetic field here-
brainly.com/question/23096032
#SPJ4
Answer:
4.5sec
Explanation:
From the question above, the following are the parameters that are given
u= 30m/s
v= 50m/s
s= 180m
First of all we have to find the acceleration by using the third equation of motion
V^2= U^2 + 2as
50^2= 30^2 + 2(a)(180)
2500= 900 + 360a
Collect the like terms
2500-900= 360a
1600=360a
Divide both sides by the coefficient of a which is 360
1600/360=360a/360
a= 4.44m/s
The next step is to find the time. To do this we will have to use the first equation of motion
v= u + at
50= 30 + 4.44t
Collect the like terms
50-30= 4.44t
20= 4.44t
Divide both sides by the coefficient of t which is 4.44
20/4.44= 4.44t/4.44
t= 4.5sec
Hence 4.5secs elapses while the auto moves at a distance of 180m