Answer:
Many familiar physical quantities can be specified completely by giving a single number and the appropriate unit. For example, “a class period lasts 50 min” or “the gas tank in my car holds 65 L” or “the distance between two posts is 100 m.” A physical quantity that can be specified completely in this manner is called a scalar quantity. Scalar is a synonym of “number.” Time, mass, distance, length, volume, temperature, and energy are examples of scalar quantities.
Answer:
The distance from charge 5 μ C = 26.45 cm and the distance from - 4 μ C is 23.55 cm.
Explanation:
Given that
q₁ = 5 μ C
q₂ = - 4 μ C
The distance between charges = 50 cm
d= 50 cm
Lets take at distance x from the charge μ C ,the electrical field is zero.
That is why the distance from the charge - 4 μ C = 50 - x cm
We know that ,electric field is given as


Therefore the distance from charge 5 μ C = 26.45 cm and the distance from - 4 μ C is 23.55 cm.
Answer:
d) Wind
Explanation:
Secondary energy is energy produced by converting energy available in its natural state in the environment. Hence Wind is a primary source not a secondary source
C) A current is induced in the coiled wire, which lights the light bulb
The moving magnetic field creates electricity which lights the light bulb
Hope it helps!
Answer:
B. 17m/s
Explanation:
This question contains a graph that illustrates the relationship between the speed of a car over time. The graph shows that one can make an inference of the amount of time it takes for the car to cover a particular speed and vice versa.
In this case, after 3 seconds, the speed of the car will be 17 m/s. This inference was got by tracing the position of 3s in the x-axis to the value on the y-axis. Doing this, the best inference for the speed of the car after 3 seconds is 17m/s.