The first object also has half the inertia.
Answer: Option A
<u>Explanation:</u>
Inertia is the tendency of an object to remain in its state. It resists the change in the state of object due to any external forces. So the inertia is the property of an object to resists the change in its state due to any kind of external force. Thus as the mass decreases, the central mass of inertia of the object will also decrease as both are directly proportional to each other.
Answer:
B
Explanation:
It creates an equal amount of p energy.
REMEMBER: ENERGY CAN NEVER BE CREATED OR DESTROYED.
It has acceleration while it's in your hand and you're in the process of flinging it, but we don't know how much.
It has acceleration ... pretty big ... during the short time between hitting the first blade of grass and coming to rest in the dirt, at the end of its trip.
From the time it leaves your hand until it hits the grass on the way down, its has the same constant, continuous acceleration ... 9.8 m/s^2 downward, the acceleration of gravity.
The greatest acceleration is probably at the end of the trip, after it hits the grass, and its speed drops to zero in a tiny fraction of a second.
1110 atm
Let's start by calculating how many cm deep is 36,000 feet.
36000 ft * 12 in/ft * 2.54 cm/in = 1097280 cm
Now calculate how much a column of water 1 cm square and that tall would mass.
1097280 cm * 1.04 g/cm^3 = 1141171.2 g/cm^2
We now have a number using g/cm^2 as it's unit and we desire a unit of Pascals ( kg/(m*s^2) ).
It's pretty obvious how to convert from g to kg. But going from cm^2 to m is problematical. Additionally, the s^2 value is also a problem since nothing in the value has seconds as an unit. This indicates that a value has been omitted. We need something with a s^2 term and an additional length term. And what pops into mind is gravitational acceleration which is m/s^2. So let's multiply that in after getting that cm^2 term into m^2 and the g term into kg.
1141171.2 g/cm^2 / 1000 g/kg * 100 cm/m * 100 cm/m = 11411712 kg/m^2
11411712 kg/m^2 * 9.8 m/s^2 = 111834777.6 kg/(m*s^2) = 111834777.6 Pascals
Now to convert to atm
111834777.6 Pa / 1.01x10^5 Pa/atm = 1107.2750 atm
Now we gotta add in the 1 atm that the atmosphere actually provides (but if you look closely, you'll realize that it won't affect the final result).
1107.274 atm + 1 atm = 1108.274 atm
And finally, round to 3 significant figures since that's the accuracy of our data, giving 1110 atm.