D-number of electrons in the outer energy level.
Answer:
Percent yield = 89.1%
Explanation:
Based on the equation:
Cl₂ + 2KI → 2KCl + I₂
<em>1 mole of Cl₂ reacts with 2 moles of KI to produce to moles of KCl</em>
<em />
To solve this quesiton we must find the moles of each reactant in order to find the limiting reactant. With the limiting reactant we can find the moles of KCl and the mass:
<em>Moles Cl₂:</em>
8x10²⁵ molecules * (1mol / 6.022x10²³ molecules) = 133 moles
<em>Moles KI -Molar mass: 166.0028g/mol-</em>
25g * (1mol / 166.0028g) = 0.15 moles
Here, clarely, the KI is the limiting reactant
As 2 moles of KI produce 2 moles of KCl, the moles of KCl produced are 0.15 moles. The theoretical mass is:
0.15 moles * (74.5513g / mol) =
11.2g KCl
Percent yield is: Actual yield (10.0g) / Theoretical yield (11.2g) * 100
<h3>Percent yield = 89.1%</h3>
Answer:
Sample A is a mixture
Sample B is a mixture
Explanation:
For sample A, we are told that the originally yellow solid was dissolved and we obtained an orange powder at the bottom of the beaker. Subsequently, only about 30.0 g of solid was recovered out of the 50.0g of solid dissolved. This implies that the solid is not pure and must be a mixture. The other components of the mixture must have remained in solution accounting for the loss in mass of solid obtained.
For sample B, we are told that boiling started at 66.2°C and continued until 76.0°C. The implication of this is that B must be a mixture since it boils over a range of temperatures. Pure substances have a sharp boiling point.
Answer:
The common thing is the compound water
Explanation:
in condensation h2O is expelled while in hydrolysis water is used or added
Answer: 23 liter
Explanation: Im pretty sure