Answer:
standard entropy of vaporization of ethanol = 142.105 J/K-mol
Explanation:
given data
enthalpy of vaporization of ethanol = 40.5 kJ/mol = 40.5 ×
J/mol
entropy of vaporization of ethanol boiling point = 285 K
to find out
standard entropy of vaporization of ethanol
solution
we get here standard entropy of vaporization of ethanol that is expess as
standard entropy of vaporization of ethanol ΔS =
.............1
here ΔH is enthalpy of vaporization of ethanol and T is temperature
put value in equation 1
standard entropy of vaporization of ethanol ΔS =
standard entropy of vaporization of ethanol = 142.105 J/K-mol
A. Channel precipitation runoff into bodies of water.
Explanation:
The hydrological cycle is the continuous cycling of water between land, open water surfaces and the sea. This cycle begins with evaporation, sunlight evaporates water from the surface of earth, next condensation happens, the water absorbed is now used to form clouds, after these clouds are filled to the maximum, precipitation happens, this can be in the form of rainfall and snow, this cycle finalizes when the precipitation of water runs off the land and back into water sources.
Sources of water pollution:
- <em>During precipitation: </em>Smog can be gathered in the atmosphere, during precipitation this pollution can turn into acid rain.
- <em>During runoff:</em> After acid rain hits the ground this polluted water can run into water sources (lakes, rivers, reservoirs).To some extent rivers are a self-renewing resource, if a small quantity of pollution discharges in it the river can return to a clean, unpolluted condition, unfortunately, if the pollution is too big the renewing won't be possible, another problem is even though rivers get cleaned the pollution moves to the seas. Lakes are even more vulnerable to pollution, the flushing effect in these water bodies is less evident than in rivers.
I hope you find this information useful and interesting! Good luck!
Explanation:
the physical and chemical properties of an element are periodic functions of their atomic number.