No additional force is required because it's already going downhill
Answer:
1.25 m
0.5 s
Explanation:
Given:
v₀ = 5 m/s
v = 0 m/s
a = -10 m/s²
Find: Δy
v² = v₀² + 2aΔy
(0 m/s)² = (5 m/s)² + 2 (-10 m/s²) Δy
Δy = 1.25 m
Find: t
v = at + v₀
(0 m/s) = (-10 m/s²) t + (5 m/s)
t = 0.5 s
Answer:
25m/s²
Explanation:
Using one of the equations of motion.
v² = u²+2as where
v is the final velocity of the astronaut
u is his initial velocity
a = -g (the acceleration will be acceleration due to gravity since he is acting under the influence of gravity. The value is negative because the astronaut jumps up to a particular height)
s = H = total height covered
The equation will then become;
v² = u²-2gH
Given
u = 60m/s
v = 0m/s
g = ?
H = 72m
Substituting the given value into the equation;
0² = 60²-2g(72)
0 = 3600-144g
-3600 = -144g
g = -3600/-144
g = 25m/s²
The magnitude of his acceleration due to gravity on the planet is 25m/s²
Please write in English because I do not understand
Answer:
(i) 
(ii) 
Explanation:
Let t be the average thickness of the sheet.
Given that:
Density of the aluminum sheet is 
Mass of sheet = 60.7 g
Length of sheet = 50.0 cm
Width of sheet = 30.0 cm
(i) Using, Density=Mass/Volume


Hence, the volume of the sheet is
.
(ii) Now, as this aluminum sheet is in the shape of a cuboid, so the volume of the sheet is



Hence, the average thickness of the sheet is
.