None of the above are the name of an air mass. This is probably a trick question.
Answer:
f = 55mm, h ’= -9.89 cm
f = 200 mm, h ’= 42.5 cm
Explanation:
For this exercise let's start by finding the distance to the image, using the equation of the constructor

where f is the focal length, p and q are the distances to the object and image, respectively
lens with f₁ = 55mm = 0.55cm
=
= 1.718
q₁ = 0.582 m
lens with f₂ = 200mm = 2m
=
= 0.4
q₂ = 2.5 m
the magnification of a lens is given by
m =
h ’=
let's calculate for each lens
f = 55mm
h '= - 0.582 / 10 1.7
h ’= 0.0989 m
h ’= -9.89 cm
f = 200 mm
h '= - 2.5 / 10 1.7
h ’= -0.425 m
h ’= 42.5 cm
The negative sign indicates that the image is real and inverted
Answer:
The shearing stress is 10208.3333 Pa
The shearing strain is 0.25
The shear modulus is 40833.3332 Pa
Explanation:
Given:
Block of gelatin of 120 mm x 120 mm by 40 mm
F = force = 49 N
Displacement = 10 mm
Questions: Find the shear modulus, Sm = ?, shearing stress, Ss = ?, shearing strain, SS = ?
The shearing stress is defined as the force applied to the block over the projected area, first, it is necessary to calculate the area:
A = 40*120 = 4800 mm² = 0.0048 m²
The shearing stress:

The shearing strain is defined as the tangent of the displacement that the block over its length:

Finally, the shear modulus is the division of the shearing stress over the shearing strain:

Answer:
The number of beats is 10.58 in 35°C.
Explanation:
The beat frequency is given by : f₁-f₂
At 5°C, f₁-f₂ = 4
We need to find the number of beats in 35°C.
The frequency in a standing wave is proportional to
.
So,

So, the number of beats is 10.58 in 35°C.
We use the kinematic equation of motion, to calculate the average acceleration

or 
Here,
is initial speed , v is final speed h is covered distance
is initial position.
Given
,
,
and
.
Substituting these values in above equation we get,

Thus, the average acceleration of the sprinter is
.