Answer:

=> The colour of this stone is usually a pale greenish blue, owing to the presence of iron impurities. Stones that are treated with heat look more blue than green. On the Mohs scale of hardness, aquamarine ranges between 7.5 and 8 making it a relatively hard gemstone.
=> The best way to identify a real aquamarine stone is by looking at its colour. In its natural form, they have a pale blue colour, which is similar to seawater. They may have a slight green or yellow tint as well. Naturally occurring gems have excellent clarity and transparency.
=> The hardness of the stone is another feature you can use to identify the stone. Aquamarine stones are hard and they don’t get scratches easily. However, they can easily scratch glass and other such surfaces. So, if you find visible scratches on the stone, rethink your decision to buy it.
=> Most faceted aquamarine stones are clean to the eye and clear of any inclusions. However, translucent and opaque aquamarine is also available. These are usually fashioned into cabochons or beads. In some cases, inclusions may appear as parallel tubes. Such stones can be crafted to show a cat’s eye. Stones with cat’s eye and star effect are rare and highly priced.
1. a group of resources treated as a single entity that accepts a combination of materials and instructions to add value through a series of operations; may be either automated or manual.
2. a group of cells that have similar structure and that function together as a unit. A nonliving material, called the intercellular matrix, fills the spaces between the cells.
3. a differentiated structure (such as a heart, kidney, leaf, or stem) consisting of cells and tissues and performing some specific function in an organism.
4. a group of organs that work together to perform a certain function in an organism's body.
5. complex systems of chemical compounds that, through interaction and environment, play a wide variety of roles. Organisms are semi-closed chemical systems. Although they are individual units of life (as the definition requires), they are not closed to the environment around them.
6. the significance of the charge hosted by a particular atom in a molecule becomes obvious
7. an interacting group of various species in a common location
8. an ecological community comprised of biological, physical, and chemical components
9. the variety of life found in a place on Earth
Explanation:
The given data is as follows.
= 98.70 kPa = 98700 Pa,
T =
= (30 + 273) K = 303 K
height (h) = 30 mm = 0.03 m (as 1 m = 100 mm)
Density = 13.534 g/mL = 
= 13534 
The relation between pressure and atmospheric pressure is as follows.
P = 
Putting the given values into the above formula as follows.
P = 
= 
= 102683.05 Pa
= 102.68 kPa
thus, we can conclude that the pressure of the given methane gas is 102.68 kPa.
ACIDIC BEHAVIOR OF SOLUTION
Answer:
We'll have 1 mol Al2O3 and 3 moles H2
Explanation:
Step 1: data given
Numer of moles of aluminium = 2 moles
Number of moles of H2O = 6 moles
Step 2: The balanced equation
2Al + 3H2O → Al2O3 + 3H2
Step 3: Calculate the limiting reactant
For 2 moles Al we need 3 moles H2O to produce 1 mol Al2O3 and 3 moles H2
Aluminium is the limiting reactant. It will completely be consumed (2 moles).
H2O is in excess. There will react 3/2 * 2 = 3 moles
There will remain 6 - 3 = 3 moles
Step 4: Calculate moles products
For 2 moles Al we need 3 moles H2O to produce 1 mol Al2O3 and 3 moles H2
For 2 moles Al we'll have 2/1 = 1 mol Al2O3
For 2 moles Al We'll have 3/2 * 2 = 3 moles H2
We'll have 1 mol Al2O3 and 3 moles H2