The correct option is this: SPECIFIC HEAT CAPACITY IS AN INTENSIVE PROPERTY AND DOES NOT DEPEND ON SAMPLE SIZE.
Generally, all the properties of matters can be divided into two classes, these are intensive and extensive properties. Intensive properties are those properties that are not determined by the quantity of the material that is present or available. Examples of intensive properties are colour, density and specific heat capacity. For instance, whether you have a bucket of water or a cup of water, the quantity does not matter, the colour of water will always remain the same. Extensive properties in contrast, are those properties that depend on the quantity of material that is available. Examples are mass, heat capacity and volume.
Answer:
Mass = 157.5 g
Explanation:
Given data:
Mass of CO needed = ?
Mass of Fe formed = 209.7 g
Solution:
Chemical equation:
3CO + F₂O₃ → 2Fe + 3CO₂
Number of moles of Fe:
Number of moles = mass/ molar mass
Number of moles = 209.7 g/ 55.85 g/mol
Number of moles = 3.75 mol
Now we will compare the moles of iron and carbon monoxide.
Fe : CO
2 : 3
3.75 ; 3/2×3.75 = 5.625 mol
Mass of CO:
Mass = number of moles × molar mass
Mass = 5.625 mol × 28 g/mol
Mass = 157.5 g
There are a couple of ways todetermine if a reaction is exothermic or endothermic. Endothermic meaning that heat is added to the reaction to make the reactants interact and exothermic meaning heat is released during the reaction between the two reactants.
In endothermic reactions you can find a triangle above the arrow.
Answer:
% yield = 82.5%
Explanation:
HgO + 2Cl₂ → HgCl₂ + Cl₂O
Our reactants are:
Our products are:
We do not have information about moles of reactants, but we do know the theoretical yield and the grams of product, in this case Cl₂O, we have produced.
Percent yield = (Yield produced / Theoretical yield) . 100
Theoretical yield is the mass of product which is produced by sufficent reactant. We replace data:
% yield = (0.71 g/0.86g) . 100 = 82.5%