Answer:
temperature on left side is 1.48 times the temperature on right
Explanation:
GIVEN DATA:

T1 = 525 K
T2 = 275 K
We know that


n and v remain same at both side. so we have

..............1
let final pressure is P and temp 

..................2
similarly
.............3
divide 2 equation by 3rd equation
![\frac{21}{11}^{-2/3} \frac{21}{11}^{5/3} = [\frac{T_1 {f}}{T_2 {f}}]^{5/3}](https://tex.z-dn.net/?f=%5Cfrac%7B21%7D%7B11%7D%5E%7B-2%2F3%7D%20%5Cfrac%7B21%7D%7B11%7D%5E%7B5%2F3%7D%20%3D%20%5B%5Cfrac%7BT_1%20%7Bf%7D%7D%7BT_2%20%7Bf%7D%7D%5D%5E%7B5%2F3%7D)

thus, temperature on left side is 1.48 times the temperature on right
F should be 10. If The Whole top is 50cm, then we should subtract 10n and 30n which gives us 10.
Or it could be 15 if both top and bottom are 25. 10+15= 25.
As an object falls from rest, its gravitational energy is converted to kinetic energy
G.P.E = K.E = mgh
K.E = (80 Kg)(9.8 m/s²)(30 m)
K.E. = 23,520 J
The answer is D. The input force is equal to the output force.
I just did test and got it right
Answer:
A total eclipse occurs when the dark silhouette of the Moon completely obscures the intensely bright light of the Sun, allowing the much fainter solar aureole to be visible. During any one eclipse, totality occurs at best only in a narrow track on the surface of Earth. This narrow track is called the path of totality.
A partial lunar eclipse happens when part of the Moon enters Earth's shadow. In a partial eclipse, Earth's shadow appears very dark on the side of the Moon facing Earth.