Answer:
v = 15.65 m/s
Explanation:
We use conservation of mechanical energy between initial (i) and final (f) states:
Pi + KEi = Pf + KEf
At the top of the cave at the instant the bat starts to fall, there is only potential energy since the bat's velocity is zero.
Pi = m g h = 600 J
and the KEi = 0 J (no velocity)
Knowing the height of the cave's roof (12.8 m) , we can find the mass of the bat:
m = 600 J / (g 12.5) = 4.9 kg
Using conservation of mechanical energy, the final state is:
Pf + KEf = 600 J
with Pf = 0 (just touching the ground)
KEf= 1/2 4.9 (v^2)
and we solve for the velocity:
600 J = 0 + 1/2 4.9 (v^2)
v^2 = 600 * 2 / 4.9 = 244.9
v = 15.65 m/s
Answer:
The centre of the earth is harder to study than the centre of the sun." Temperatures in the lower mantle the reach around 3,000-3,500 degrees Celsius and the barometer reads about 125 gigapascals, about one and a quarter million times atmospheric pressure.
Explanation:
1/16........................................
Answer:
False.
Explanation:
The statement shown in the question above is false and this can be confirmed by Newton's law on universal gravitation. According to Newton, the gravitational force exerted on any body is proportional to its weight, but the distance that the object travels when falling is disproportionate. In addition, if the force resulting from the weight of the object and its displacement has an angle of 0º, the weight force of that object will provide an increase in kinetic energy.
The density of seawater at a depth where the pressure is 500 atm is 
Explanation:
The relationship between bulk modulus and pressure is the following:

where
B is the bulk modulus
is the density at surface
is the variation of pressure
is the variation of density
In this problem, we have:
is the bulk modulus

is the change in pressure with respect to the surface (the pressure at the surface is 1 atm)
Therefore, we can find the density of the water where the pressure is 500 atm as follows:

Learn more about pressure in a fluid:
brainly.com/question/9805263
#LearnwithBrainly