1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
beks73 [17]
2 years ago
9

How can I skip more helppppppppppppppppppppppp

Engineering
2 answers:
julia-pushkina [17]2 years ago
5 0

Answer:

answer someone else's question and you will never have to skip again

Explanation:

AfilCa [17]2 years ago
4 0

Answer: skip what

Explanation:

You might be interested in
Water at 200C flows through a pipe of 10 mm diameter pipe at 1 m/s. Is the flow Turbulent ? a. Yes b. No
Degger [83]

Answer:

Yes, the flow is turbulent.

Explanation:

Reynolds number gives the nature of flow. If he Reynolds number is less than 2000 then the flow is laminar else turbulent.

Given:

Diameter of pipe is 10mm.

Velocity of the pipe is 1m/s.

Temperature of water is 200°C.

The kinematic viscosity at temperature 200°C is 1.557\times10^{-7}m2/s.

Calculation:

Step1

Expression for Reynolds number is given as follows:

Re=\frac{vd}{\nu}

Here, v is velocity, \nu is kinematic viscosity, d is diameter and Re is Reynolds number.

Substitute the values in the above equation as follows:

Re=\frac{vd}{\nu}

Re=\frac{1\times(10mm)(\frac{1m}{1000mm})}{1.557\times10^{-7}}

Re=64226.07579

Thus, the Reynolds number is 64226.07579. This is greater than 2000.

Hence, the given flow is turbulent flow.

5 0
2 years ago
A welding rod with κ = 30 (Btu/hr)/(ft ⋅ °F) is 20 cm long and has a diameter of 4 mm. The two ends of the rod are held at 500 °
SOVA2 [1]

Answer:

In Btu:

Q=0.001390 Btu.

In Joule:

Q=1.467 J

Part B:

Temperature at midpoint=274.866 C

Explanation:

Thermal Conductivity=k=30  (Btu/hr)/(ft ⋅ °F)= \frac{30}{3600} (Btu/s)/(ft.F)=8.33*10^{-3}  (Btu/s)/(ft.F)

Thermal Conductivity is SI units:

k=30(Btu/hr)/(ft.F) * \frac{1055.06}{3600*0.3048*0.556} \\k=51.88 W/m.K

Length=20 cm=0.2 m= (20*0.0328) ft=0.656 ft

Radius=4/2=2 mm =0.002 m=(0.002*3.28)ft=0.00656 ft

T_1=500 C=932 F

T_2=50 C= 122 F

Part A:

In Joules (J)

A=\pi *r^2\\A=\pi *(0.002)^2\\A=0.00001256 m^2

Heat Q is:

Q=\frac{k*A*(T_1-T_2)}{L} \\Q=\frac{51.88*0.000012566*(500-50}{0.2}\\ Q=1.467 J

In Btu:

A=\pi *r^2\\A=\pi *(0.00656)^2\\A=0.00013519 m^2

Heat Q is:

Q=\frac{k*A*(T_1-T_2)}{L} \\Q=\frac{8.33*10^{-3}*0.00013519*(932-122}{0.656}\\ Q=0.001390 Btu

PArt B:

At midpoint Length=L/2=0.1 m

Q=\frac{k*A*(T_1-T_2)}{L}

On rearranging:

T_2=T_1-\frac{Q*L}{KA}

T_2=500-\frac{1.467*0.1}{51.88*0.00001256} \\T_2=274.866\ C

4 0
2 years ago
Find the number of Btu conducted through a wall in 8 hours. The wall is 8 feet high by 24 feet long and has a total R-value of 1
dedylja [7]

Answer:

ΔQ = 4930.37 BTu

Explanation:

given data

height h = 8ft

Δt = 8  hours

length L = 24 feet

R value = 16.2 hr⋅°F⋅ft² /Btu

inside temperature t1 = 68°F

outside temperature t2 = 16°F

to find out

number of Btu conducted

solution

we get here number of Btu conducted by this expression that s

\frac{\Delta Q}{\Delta t} =\frac{-A}{R} (t2 -t1)     ......................1

here A is area that is = h × L = 8 × 24 = 1492 ft²

put here value we get

\frac{\Delta Q}{8} =\frac{-192}{16.2} (16-68)

solve it we get

ΔQ = 4930.37 BTu

7 0
3 years ago
What does the air change rate represent?
Juli2301 [7.4K]

Answer and Explanation:

  • The removal or addition of air volume to the space is the air change rate
  • The rate of air change is positive when air volume is added to the space and the rate of air change is negative when air volume is removed from the space.
  • The standard built home has a 0.5 to 1 of air change rate.
  • The rate of air change is dependent on the building (how the building form)  

3 0
2 years ago
Give the approximate temperature (in K) at which creep deformation becomes an important consideration for each of the following
andrezito [222]

Answer:

691K, 543K, 725K, 1473K, 240K, 373K

Explanation:

Creep deformation of any metal is the transformational tendency of a metal to distort rapidly or slowly when attacked by any form of mechanical stress. The temperature significant for a metal to deform is gotten by the division of the actual temperature of the metal by its melting point. This is termed homologous temperature which is 0.4 or higher. It is calculated by the equation:

0.4Tm

Therefore for the listed metals...

For Nickel, 0.4Tm = 0.4 ×(1455 + 273) = 691 K

For Copper, 0.4Tm = 0.4 ×(1085 + 273) = 543 K

For Iron, 0.4Tm = 0.4 ×(1538 + 273) = 725 K

For Tungsten, 0.4Tm = 0.4 ×(3410 + 273) = 1473 K

For Lead, 0.4Tm = 0.4 × (327 + 273) = 240 K

For Aluminium, 0.4Tm = 0.4 ×(660 + 273) = 373 K

5 0
3 years ago
Other questions:
  • A fluid flows steadily through a pipe with a uniform cross sectional area. The density of the fluid decreases to half its initia
    6·1 answer
  • To increase the thermal efficiency of a reversible power cycle operating between thermal reservoirs at TH and Tc, would you incr
    6·1 answer
  • Compare the tensile load capacity of a 5/16-18 UNC thread and a 5/16-24 UNF thread made of the same material.
    6·1 answer
  • What are the units or dimensions of the shear rate dv/dy (English units)? Then, what are the dimensions of the shear stress τ= μ
    14·1 answer
  • Carbon resistors often come as a brown cylinder with colored bands. These colored bands can be read to determine the manufacture
    7·1 answer
  • An engineer is designing a total hip implant. She intends to make the femoral stem out of titanium because it forms a good inter
    12·1 answer
  • What are two reasons why Hunter edjucation is important?<br><br><br> 30 pts
    12·1 answer
  • What is the primary difference between the process of lost-wax casting as practiced in ancient times and that same process today
    13·1 answer
  • A TV USE 75 WATTS WHILE IN USED ASSMING THAT ITIS USED 4 HOURS EVERY DAY HOW MUCH ENERGY IN 4 IN KWH WOULD THE TV CONSUME ANNUAL
    13·2 answers
  • The coefficient of static friction for both wedge surfaces is μw=0.4 and that between the 27-kg concrete block and the β=20° inc
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!