<span>1. Translate, predict the products, and balance the equation above.
Li + Cu(NO3)2 = Li(NO3)2 + Cu
2. How many particles of lithium are needed to produce 125 g of copper?
125 g Cu ( 1 mol / 63.55 g ) (1 mol Li / 1 mol Cu ) ( 6.022 x 10^23 particles / 1 mol ) = 1.18x10^24 Li particles
3. How many grams of lithium nitrate are produced from 4.83E24 particles of copper (II) nitrate?
</span>4.83E24 particles of copper (II) nitrate ( 1 mol / 6.022x10^23 particles ) (1 mol Li(NO3)2 / 1 mol Cu(NO3)2 ) ( 130.95 g / 1 mol ) = 1043.77 grams Li(NO3)2
Although there isn’t a picture a graph can be misleading when it doesn’t start at zero, it doesn’t give accurate information, it skips too many numbers, the vertical scale is too big or too small. Hope this helps
Metallic bonds<span>, the valence electrons from the s and p orbitals of the interacting metal atoms delocalize</span>
Answer:
About 16.1 grams of oxygen gas.
Explanation:
The reaction between magnesium and oxygen can be described by the equation:

24.4 grams of Mg reacted with O₂ to produce 40.5 grams of MgO. We want to determine the mass of O₂ in the chemical change.
Compute using stoichiometry. From the equation, we know that two moles of MgO is produced from every one mole of O₂. Therefore, we can:
- Convert grams of MgO to moles of MgO.
- Moles of MgO to moles of O₂
- And moles of O₂ to grams of O₂.
The molecular weights of MgO and O₂ are 40.31 g/mol and 32.00 g/mol, respectively.
Dimensional analysis:

In conclusion, about 16.1 grams of oxygen gas was reacted.
You will obtain the same result if you compute with the 24.4 grams of Mg instead:
