<h2>

=
![\dfrac{[H^{+}] [A^{-}]}{[HA]}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5BH%5E%7B%2B%7D%5D%20%5BA%5E%7B-%7D%5D%7D%7B%5BHA%5D%7D)
</h2>
Explanation:
- When an aqueous solution of a certain acid is prepared it is dissociated is as follows-
⇄ 
Here HA is a protonic acid such as acetic acid, 
- The double arrow signifies that it is an equilibrium process, which means the dissociation and recombination of the acid occur simultaneously.
- The acid dissociation constant can be given by -
= ![\dfrac{[H^{+}] [A^{-}]}{[HA]}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5BH%5E%7B%2B%7D%5D%20%5BA%5E%7B-%7D%5D%7D%7B%5BHA%5D%7D)
- The reaction is can also be represented by Bronsted and lowry -
⇄ ![[H_3O^+] [A^-]](https://tex.z-dn.net/?f=%5BH_3O%5E%2B%5D%20%5BA%5E-%5D)
- Then the dissociation constant will be
= ![\dfrac{[H_3O^{+}] [A^{-}]}{[HA]}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5BH_3O%5E%7B%2B%7D%5D%20%5BA%5E%7B-%7D%5D%7D%7B%5BHA%5D%7D)
Here,
is the dissociation constant of an acid.
A frequency of 60 MHz is close to the lower end of the old VHF-TV band.
c = f λ ...... where c is the speed of light, f is the frequency and λ is the wavelength
λ = c / f = 3.00x10^8 m/s / 6.0x10^7 1/s
λ = 5.0 m
Answer:
30 hot dogs
Explanation:
It is given that :
There are 4 packets of eight wieners, i.e. 4 x 8 = 32 wieners
There are 3 bags of ten buns, i.e. 3 x 10 = 30 buns
One hot dogs need 1 bun and 1 wiener to make a hot dog.
There are 30 buns, so 30 hot dogs can be made out by using all the 30 buns and the 30 wieners out of the 32 wieners.
Therefore, 30 hot dogs.
And the number of extra wieners left = 32 - 30 = 2 wieners.
Because of the crystal structure of the ice, ice has lower density than liquid water. So the volume of the ice of same mass is greater than water. When melting, the volume will decrease.
Answer:
D
Explanation:
Its the only answer that actually makes sense and i got it right on the quiz.