1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ainat [17]
3 years ago
7

Suppose that 4.4 moles of a monatomic ideal gas (atomic mass = 7.9 × 10-27 kg) are heated from 300 K to 500 K at a constant volu

me of 0.44 m3. It may help you to recall that CV = 12.47 J/K/mole and CP = 20.79 J/K/mole for a monatomic ideal gas, and that the number of gas molecules is equal to Avagadros number (6.022 × 1023) times the number of moles of the gas.1) How much energy is transferred by heating during this process?
2) How much work is done by the gas during this process?
3) What is the pressure of the gas once the final temperature has been reached?
4) What is the average speed of a gas molecule after the final temperature has been reached?
5) The same gas is now returned to its original temperature using a process that maintains a constant pressure. How much energy is transferred by heating during the constant-pressure process?
6) How much work was done on or by the gas during the constant-pressure process?
Physics
1 answer:
timurjin [86]3 years ago
4 0

Answer:

1) ΔQ₁ = 10.97 x 10³ J = 10.97 KJ

2) W₁ = 0 J

3) P = 41.66 x 10³ Pa = 41.66 KPa

4) v = 1618.72 m/s

5) ΔQ₂ = - 18.29 x 10³ J = - 18.29 KJ

6) W₂ = - 7.33 KJ

Explanation:

1)

The heat transfer for a constant volume process is given by the formula:

ΔQ₁ = ΔU = n Cv ΔT

where,

ΔQ₁ = Heat transfer during constant volume process

ΔU = Change in internal energy of gas

n = No. of moles = 4.4 mol

Cv = Molar Specific Heat at Constant Volume = 12.47 J/mol.k

ΔT = Change in Temperature = T₂ - T₁ = 500 k - 300 k = 200 k

Therefore,

ΔQ₁ = (4.4 mol)(12.47 J/mol.k)(200 k)

<u>ΔQ₁ = 10.97 x 10³ J = 10.97 KJ</u>

<u></u>

2)

Since, work done by gas is given as:

W₁ = PΔV

where,

ΔV = 0, due to constant volume

Therefore,

<u>W₁ = 0 J</u>

<u></u>

4)

The average kinetic energy of a gas molecule is given as:

K.E = (3/2)KT

but, K.E is also given by:

K.E = (1/2)mv²

Comparing both equations:

(1/2)mv² = (3/2)KT

mv² = 3KT

v = √(3KT/m)

where,

v = average speed of gas molecue = ?

K = Boltzman Constant = 1.38 x 10⁻²³ J/k

T = Absolute Temperature = 500 K

m = mass of a molecule = 7.9 x 10⁻²⁷ kg

Therefore,

v = √[(3)(1.38 x 10⁻²³ J/k)(500 k)/(7.9 x 10⁻²⁷ kg)]

<u>v = 1618.72 m/s</u>

<u></u>

3)

From kinetic molecular theory, we know that or an ideal gas:

P = (1/3)ρv²

where,

P = pressure of gas = ?

m = Mass of Gas = (Atomic Mass)(No. of Atoms)

m = (Atomic Mass)(Avogadro's Number)(No. of Moles)

m = (7.9 x 10⁻²⁷ kg/atom)(6.022 x 10²³ atoms/mol)(4.4 mol)

m = 0.021 kg

ρ = density = mass/volume = 0.021 kg/0.44 m³ = 0.0477 kg/m³

Therefore,

P = (1/3)(0.0477 kg/m³)(1618.72 m/s)²

<u>P = 41.66 x 10³ Pa = 41.66 KPa</u>

<u></u>

5)

The heat transfer for a constant pressure process is given by the formula:

ΔQ₂ =  n Cp ΔT

where,

ΔQ₂ = Heat transfer during constant pressure process

n = No. of moles = 4.4 mol

Cp = Molar Specific Heat at Constant Pressure = 20.79 J/mol.k

ΔT = Change in Temperature = T₂ - T₁ = 300 k - 500 k = -200 k

Therefore,

ΔQ₂ = (4.4 mol)(20.79 J/mol.k)(-200 k)

<u>ΔQ₂ = - 18.29 x 10³ J = - 18.29 KJ</u>

<u>Negative sign shows heat flows from system to surrounding.</u>

<u></u>

6)

From Charles' Law, we know that:

V₁/T₁ = V₂/T₂

V₂ = (V₁)(T₂)/(T₁)

where,

V₁ = 0.44 m³

V₂ = ?

T₁ = 500 K

T₂ = 300 k

Therefore,

V₂ = (0.44 m³)(300 k)/(500 k)

V₂ = 0.264 m³

Therefore,

ΔV = V₂ - V₁ = 0.264 m³ - 0.44 m³ = - 0.176 m³

Hence, the work done , will be:

W₂ = PΔV = (41.66 KPa)(- 0.176 m³)

<u>W₂ = - 7.33 KJ</u>

<u>Negative sign shows that the work is done by the gas</u>

You might be interested in
If the kinetic and potential energy in a system are equal, then the potential energy increases. What happens as a resul
Kobotan [32]

-- If the system is 'closed', then nothing ... including energy ... can get in or out, and the total energy inside has to be constant.

If half of the energy in the system starts out as potential energy and the rest starts out as kinetic, and then the potential energy increases, there's only one place the increase could have come from ... it could only have been converted from kinetic energy.  So the <em>kinetic energy</em> in the system <em>must</em> <em>decrease</em>.

In fact, this isn't even a "result".  The kinetic energy has to decrease <em><u>before</u></em> the potential energy can increase, because that's where the increase has to come from.

If the system is 'open', then energy can come in and go out.  If the potential energy inside suddenly increases, we don't know where it came from, so we can't say anything about what happens to the system.

7 0
3 years ago
A 2,000 kg car starts from rest and coasts down from the top of a 5.00 m long driveway that is sloped at an angel of 20o with th
ehidna [41]

Answer:

The speed at the bottom of the driveway is3.67m/s.

Explanation:

Height,h= 5sin20°= 1.71m

Potential energy PE=mgh= 2000×9.8×1.71

PE= 33516J

KE= PE- Fk ×d

0.5mv^2= 33516 - (4000×5)

0.5×2000v^2= 33516 - 20000

1000v^2= 13516

v^2= 13516/1000

v =sqrt 13.516

v =3.67m/s

5 0
3 years ago
A metal wire is in thermal contact with two heat reservoirs at both of its ends. Reservoir 1 is at a temperature of 781 K, and r
andreev551 [17]

Answer:2.517 J/K

Explanation:

Given

Reservoir 1 Temperature T_1=781 K

Reservoir 2 Temperature T_2=335 K

Let Q is the amount of heat Flows i.e. Q=1477 J

thus change in Entropy is given by \frac{\sum Q}{T}

\Delta S=\frac{\sum Q}{T}=-\frac{Q}{T_1}+\frac{Q}{T_2}

\Delta S=\frac{\sum Q}{T}=-\frac{1477}{781}+\frac{1477}{335}

\Delta S=\frac{\sum Q}{T}=-1.891+4.4089

\Delta S=\frac{\sum Q}{T}=2.517 J/K                              

6 0
3 years ago
A planet orbits a star, in a year of length 3.37 x 107 s, in a nearly circular orbit of radius 1.04 x 1011 m. With respect to th
PIT_PIT [208]

Answer

Given,

Time period of star,T = 3.37 x 10⁷ s

Radius of circular orbit,R = 1.04 x 10¹¹ m

a) Angular speed of the planet

   \omega = \dfrac{2\pi}{T}=\dfrac{2\pi}{3.37\times 10^{7}}

   \omega = 1.864\times 10^{-7}\ rad/s

b) tangential speed

   v = r \omega = 1.04\times 10^{11}\times 1.864 \times 10^{-7}

       v = 1.94 x 10⁴ m/s

c) centripetal acceleration magnitude

      a = \dfrac{v^2}{r}= \dfrac{(1.94\times 10^4)^2}{1.04\times 10^{11}}

          a = 3.62 x 10⁻³ m/s²

8 0
3 years ago
An evacuated long tube contains a coin and a feather. If both objects fall together starting from the top of the tube, it is exp
Natasha_Volkova [10]

Answer:

gexp = 3.65 m/s²

Explanation:

The value of acceleration due to gravity changes with the altitude. The following formula gives the value of acceleration due to gravity at some altitude from the sea level:

gexp = g(1 - 2h/Re)

where,

gexp = expected value of g at altitude = ?

g = acceleration due to gravity at sea level = 9.8 m/s²

h = altitude = 2000 km = 2 x 10⁶ m

Re = Radius of Earth = 6.37 x 10⁶ m

Therefore,

gexp = (9.8 m/s²)(1 - 2*2 x 10⁶ m/6.37 x 10⁶ m)

<u>gexp = 3.65 m/s²</u>

5 0
3 years ago
Other questions:
  • What is the maximum kinetic energy k0 of the photoelectrons when light of wavelength 350 nm falls on the same surface?
    12·1 answer
  • 1. is the full moon a spring tide or neap tide
    6·2 answers
  • Different forces were applied to five balls, and each force was applied for the same amount of time. The data is in the table.
    14·2 answers
  • What kind of electromagnetic waves do computers and microwave ovens produce?
    13·1 answer
  • When applying Gauss' law for a capacitor containing a dielectric, which of the following statements is false? (Latter part of se
    12·1 answer
  • What is the force that acts against motion
    10·1 answer
  • Which of the following astronomical bodies or collection of astronomical bodies is likely to be a part of the others listed?
    6·2 answers
  • If the net force on an object is to the left, what will the direction of the resulting acceleration
    14·1 answer
  • 1. Compared to most other metals, what properties do the alkali metals have? А low melting points and high densities B low melti
    5·1 answer
  • Food and electricity are the examples of_________________​
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!