1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ainat [17]
4 years ago
7

Suppose that 4.4 moles of a monatomic ideal gas (atomic mass = 7.9 × 10-27 kg) are heated from 300 K to 500 K at a constant volu

me of 0.44 m3. It may help you to recall that CV = 12.47 J/K/mole and CP = 20.79 J/K/mole for a monatomic ideal gas, and that the number of gas molecules is equal to Avagadros number (6.022 × 1023) times the number of moles of the gas.1) How much energy is transferred by heating during this process?
2) How much work is done by the gas during this process?
3) What is the pressure of the gas once the final temperature has been reached?
4) What is the average speed of a gas molecule after the final temperature has been reached?
5) The same gas is now returned to its original temperature using a process that maintains a constant pressure. How much energy is transferred by heating during the constant-pressure process?
6) How much work was done on or by the gas during the constant-pressure process?
Physics
1 answer:
timurjin [86]4 years ago
4 0

Answer:

1) ΔQ₁ = 10.97 x 10³ J = 10.97 KJ

2) W₁ = 0 J

3) P = 41.66 x 10³ Pa = 41.66 KPa

4) v = 1618.72 m/s

5) ΔQ₂ = - 18.29 x 10³ J = - 18.29 KJ

6) W₂ = - 7.33 KJ

Explanation:

1)

The heat transfer for a constant volume process is given by the formula:

ΔQ₁ = ΔU = n Cv ΔT

where,

ΔQ₁ = Heat transfer during constant volume process

ΔU = Change in internal energy of gas

n = No. of moles = 4.4 mol

Cv = Molar Specific Heat at Constant Volume = 12.47 J/mol.k

ΔT = Change in Temperature = T₂ - T₁ = 500 k - 300 k = 200 k

Therefore,

ΔQ₁ = (4.4 mol)(12.47 J/mol.k)(200 k)

<u>ΔQ₁ = 10.97 x 10³ J = 10.97 KJ</u>

<u></u>

2)

Since, work done by gas is given as:

W₁ = PΔV

where,

ΔV = 0, due to constant volume

Therefore,

<u>W₁ = 0 J</u>

<u></u>

4)

The average kinetic energy of a gas molecule is given as:

K.E = (3/2)KT

but, K.E is also given by:

K.E = (1/2)mv²

Comparing both equations:

(1/2)mv² = (3/2)KT

mv² = 3KT

v = √(3KT/m)

where,

v = average speed of gas molecue = ?

K = Boltzman Constant = 1.38 x 10⁻²³ J/k

T = Absolute Temperature = 500 K

m = mass of a molecule = 7.9 x 10⁻²⁷ kg

Therefore,

v = √[(3)(1.38 x 10⁻²³ J/k)(500 k)/(7.9 x 10⁻²⁷ kg)]

<u>v = 1618.72 m/s</u>

<u></u>

3)

From kinetic molecular theory, we know that or an ideal gas:

P = (1/3)ρv²

where,

P = pressure of gas = ?

m = Mass of Gas = (Atomic Mass)(No. of Atoms)

m = (Atomic Mass)(Avogadro's Number)(No. of Moles)

m = (7.9 x 10⁻²⁷ kg/atom)(6.022 x 10²³ atoms/mol)(4.4 mol)

m = 0.021 kg

ρ = density = mass/volume = 0.021 kg/0.44 m³ = 0.0477 kg/m³

Therefore,

P = (1/3)(0.0477 kg/m³)(1618.72 m/s)²

<u>P = 41.66 x 10³ Pa = 41.66 KPa</u>

<u></u>

5)

The heat transfer for a constant pressure process is given by the formula:

ΔQ₂ =  n Cp ΔT

where,

ΔQ₂ = Heat transfer during constant pressure process

n = No. of moles = 4.4 mol

Cp = Molar Specific Heat at Constant Pressure = 20.79 J/mol.k

ΔT = Change in Temperature = T₂ - T₁ = 300 k - 500 k = -200 k

Therefore,

ΔQ₂ = (4.4 mol)(20.79 J/mol.k)(-200 k)

<u>ΔQ₂ = - 18.29 x 10³ J = - 18.29 KJ</u>

<u>Negative sign shows heat flows from system to surrounding.</u>

<u></u>

6)

From Charles' Law, we know that:

V₁/T₁ = V₂/T₂

V₂ = (V₁)(T₂)/(T₁)

where,

V₁ = 0.44 m³

V₂ = ?

T₁ = 500 K

T₂ = 300 k

Therefore,

V₂ = (0.44 m³)(300 k)/(500 k)

V₂ = 0.264 m³

Therefore,

ΔV = V₂ - V₁ = 0.264 m³ - 0.44 m³ = - 0.176 m³

Hence, the work done , will be:

W₂ = PΔV = (41.66 KPa)(- 0.176 m³)

<u>W₂ = - 7.33 KJ</u>

<u>Negative sign shows that the work is done by the gas</u>

You might be interested in
What is the scientific saying/principle that explains why a hammer and a screwdriver, both made of steel, are used for different
deff fn [24]

Hammer and screwdriver perform different tasks because they are both simple machines.

A machine is simply a device that can be used to perform a task. This  machine can be any physical system or device designed to perform a specific task.

The efficiency of the machine describes the easy with which each machine or tool is able to use input power to overcome a task.

Machines are designed to overcome a particular task with little effort in order to increase its efficiency.

Hammer and screwdriver, are both examples of simple machines.

Thus, Hammer and screwdriver perform different tasks because they are both simple machines.

Learn more here: brainly.com/question/21387235

3 0
3 years ago
A planet has a gravitational acceleration on its surface of 2.2 times Earth's gravitational acceleration on its surface. The pla
lesantik [10]

Answer:

The mass of the planet is 55 times the mass of earth.

Explanation:

From the inverse-square gravitation law,

F = (GMm/r²)

If the weight of a body (the force with which the earth attracts a body to its centre) is to be calculated,

F = mg

m = mass of the body,

g = acceleration due to gravity

mg = (GMm/r²)

G = Gravitational constant

M = mass of the earth

m = mass of body

r = distance between the body and the centre of the earth = radius of the earth

The acceleration due to gravity is given by

g = (GM/r²)

Making the mass of the earth, the subject of formula

M = (gr²/G) (eqn 1)

So, the planet described,

Let the acceleration due to gravity on the planet be g₁

Mass of the planet be M₁

Radius of the planet be r₁

g₁ = 2.2g

r₁ = 5r

M₁ = ?

Note that the gravitational constant is the same for both planets.

So, we can write a similar expression for the planet's acceleration due to gravity

g₁ = (GM₁/r₁²)

Substituting all the parameters known in terms of their corresponding earth values

2.2g = [GM₁/(5r)²]

2.2g = [GM₁/25r²]

M₁ = (55gr²/G)

Recall the expression for the mass of the earth

M = (gr²/G)

M₁ = 55 M

The mass of the planet, in terms of Earth masses = 55M

The mass of the planet is 55 times the planet of earth.

Hope this Helps!!!

5 0
4 years ago
A ball held above the floor has what type of energy?
kondaur [170]

Answer: I think the answer is B. Potential energy

Explanation:

Because the higher the ball is held up the more energy it has.

I hoped I really helped out. ;)

7 0
3 years ago
Read 2 more answers
What is focusing<br>Help me please​
sveticcg [70]
Focusing means you’re paying particular attention to something
4 0
3 years ago
a diver is standing on the diving board. the diver has a mass of 85.0kg and has a gravitational potential emergy of 2.50x103 j s
amid [387]

Answer:

<h2>3.00m high</h2>

Explanation:

Gravitational potential energy of the diver is expressed mathematically as

P = mgh

m = mass of the diver (in kg)

g = acceleration due to gravity (in m/s²)

h = the height of the diver above the water surface.

Given m = 85.0kg, g = 9,8m/s² and P = 2.50x10³ Joules, wecan determine how high the diver is above the water surface bu substituting the given values into the formula;

h = P/mg

h = 2.50x10³/85*9.8

h = 2500/833

h ≈ 3.00m

The diver is 3.00m above the water surface.

5 0
4 years ago
Other questions:
  • When a board with a box on it is slowly tilted to larger and larger angle, common experience shows that the box will at some poi
    7·1 answer
  • Light passes straight through two polarizing filters in which the axis of polarization of the second filter is rotated 45 degree
    9·1 answer
  • What are the 4 main components of air in their molecular form?
    8·2 answers
  • Which of the following is not part of costa rica’s geography?
    7·2 answers
  • If an object is not accelerating, it can exist in what 2 other states of motion?
    13·1 answer
  • Two horizontal forces act on a 1.4 kg chopping block that can slide over a friction-less kitchen counter, which lies in an xy pl
    13·1 answer
  • 2. An 873 kg dragster accelerates at a rate of 44.6 m/s during a race.
    15·1 answer
  • Free p01nts gryfhwjksmjnd
    10·2 answers
  • How does a push or pull affect motion?
    10·1 answer
  • In a typically constructed research study, the experimental group is selected:
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!