1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ainat [17]
3 years ago
7

Suppose that 4.4 moles of a monatomic ideal gas (atomic mass = 7.9 × 10-27 kg) are heated from 300 K to 500 K at a constant volu

me of 0.44 m3. It may help you to recall that CV = 12.47 J/K/mole and CP = 20.79 J/K/mole for a monatomic ideal gas, and that the number of gas molecules is equal to Avagadros number (6.022 × 1023) times the number of moles of the gas.1) How much energy is transferred by heating during this process?
2) How much work is done by the gas during this process?
3) What is the pressure of the gas once the final temperature has been reached?
4) What is the average speed of a gas molecule after the final temperature has been reached?
5) The same gas is now returned to its original temperature using a process that maintains a constant pressure. How much energy is transferred by heating during the constant-pressure process?
6) How much work was done on or by the gas during the constant-pressure process?
Physics
1 answer:
timurjin [86]3 years ago
4 0

Answer:

1) ΔQ₁ = 10.97 x 10³ J = 10.97 KJ

2) W₁ = 0 J

3) P = 41.66 x 10³ Pa = 41.66 KPa

4) v = 1618.72 m/s

5) ΔQ₂ = - 18.29 x 10³ J = - 18.29 KJ

6) W₂ = - 7.33 KJ

Explanation:

1)

The heat transfer for a constant volume process is given by the formula:

ΔQ₁ = ΔU = n Cv ΔT

where,

ΔQ₁ = Heat transfer during constant volume process

ΔU = Change in internal energy of gas

n = No. of moles = 4.4 mol

Cv = Molar Specific Heat at Constant Volume = 12.47 J/mol.k

ΔT = Change in Temperature = T₂ - T₁ = 500 k - 300 k = 200 k

Therefore,

ΔQ₁ = (4.4 mol)(12.47 J/mol.k)(200 k)

<u>ΔQ₁ = 10.97 x 10³ J = 10.97 KJ</u>

<u></u>

2)

Since, work done by gas is given as:

W₁ = PΔV

where,

ΔV = 0, due to constant volume

Therefore,

<u>W₁ = 0 J</u>

<u></u>

4)

The average kinetic energy of a gas molecule is given as:

K.E = (3/2)KT

but, K.E is also given by:

K.E = (1/2)mv²

Comparing both equations:

(1/2)mv² = (3/2)KT

mv² = 3KT

v = √(3KT/m)

where,

v = average speed of gas molecue = ?

K = Boltzman Constant = 1.38 x 10⁻²³ J/k

T = Absolute Temperature = 500 K

m = mass of a molecule = 7.9 x 10⁻²⁷ kg

Therefore,

v = √[(3)(1.38 x 10⁻²³ J/k)(500 k)/(7.9 x 10⁻²⁷ kg)]

<u>v = 1618.72 m/s</u>

<u></u>

3)

From kinetic molecular theory, we know that or an ideal gas:

P = (1/3)ρv²

where,

P = pressure of gas = ?

m = Mass of Gas = (Atomic Mass)(No. of Atoms)

m = (Atomic Mass)(Avogadro's Number)(No. of Moles)

m = (7.9 x 10⁻²⁷ kg/atom)(6.022 x 10²³ atoms/mol)(4.4 mol)

m = 0.021 kg

ρ = density = mass/volume = 0.021 kg/0.44 m³ = 0.0477 kg/m³

Therefore,

P = (1/3)(0.0477 kg/m³)(1618.72 m/s)²

<u>P = 41.66 x 10³ Pa = 41.66 KPa</u>

<u></u>

5)

The heat transfer for a constant pressure process is given by the formula:

ΔQ₂ =  n Cp ΔT

where,

ΔQ₂ = Heat transfer during constant pressure process

n = No. of moles = 4.4 mol

Cp = Molar Specific Heat at Constant Pressure = 20.79 J/mol.k

ΔT = Change in Temperature = T₂ - T₁ = 300 k - 500 k = -200 k

Therefore,

ΔQ₂ = (4.4 mol)(20.79 J/mol.k)(-200 k)

<u>ΔQ₂ = - 18.29 x 10³ J = - 18.29 KJ</u>

<u>Negative sign shows heat flows from system to surrounding.</u>

<u></u>

6)

From Charles' Law, we know that:

V₁/T₁ = V₂/T₂

V₂ = (V₁)(T₂)/(T₁)

where,

V₁ = 0.44 m³

V₂ = ?

T₁ = 500 K

T₂ = 300 k

Therefore,

V₂ = (0.44 m³)(300 k)/(500 k)

V₂ = 0.264 m³

Therefore,

ΔV = V₂ - V₁ = 0.264 m³ - 0.44 m³ = - 0.176 m³

Hence, the work done , will be:

W₂ = PΔV = (41.66 KPa)(- 0.176 m³)

<u>W₂ = - 7.33 KJ</u>

<u>Negative sign shows that the work is done by the gas</u>

You might be interested in
5. Graph A below plots a race car's speed for 5 seconds. The car's rate of acceleration is 6 m/s^2
Georgia [21]

Answer:

The answer is below

Explanation:

We are to check if the statement is true of false. If it is false, we correct the statement.

Solution:

Acceleration is the time rate of change of velocity. It is the ratio of the change in velocity to the change in time. The acceleration can be gotten from a velocity time graph by finding the slope of the graph.

The x coordinate represent the time and the y coordinate velocity.

5) Graph A passes through the point (0, 0) and (4, 24). Therefore the acceleration (slope) is:

Acceleration = \frac{24-0}{4-0}=6\ m/s^2

This is correct.

6) Graph B is a straight line of 12 m/s. It passes through (0, 12) and (4, 12). Hence:

Acceleration = \frac{12-12}{4-0}=0\ m/s^2

This is false.

Therefore the acceleration of graph B is 0 m/s².

8 0
3 years ago
The PVT behavior of a certain gas is described by the equation of state: P(V − b) = RT where b is a constant. If in addition CV
alexdok [17]

Answer:

shown in the attachment

Explanation:

The detailed step by step and necessary mathematical application is as shown in the attachment.

6 0
3 years ago
A hydrogen fuel cell supplies power for a small motor. the fuel cell delivers a current of 0.5 a and a voltage of 0.43 v. what i
gogolik [260]
We want to know what is the power supplied by the power cell if the current I=0.5 A and the voltage V=0.43 V. The equation for power P is P= I*V, so:

P=I*V=0.5*0.43=0.215 W

So the correct answer is that the power cell is supplying the motor with P=0.215 W of power. 
8 0
3 years ago
What will the stopping distance be for a 2,000-kg car if -2,000 N of force are applied when the car is traveling 20 m/s?
astraxan [27]

Answer is B- 200 m

Given:

m (mass of the car) = 2000 Kg

F = -2000 N

u(initial velocity)= 20 m/s.

v(final velocity)= 0.

Now we know that

<u>F= ma</u>

Where F is the force exerted on the object

m is the mass of the object

a is the acceleration of the object

Substituting the given values

-2000 = 2000 × a

a = -1 m/s∧2

Consider the equation

<u>v=u +at</u>

where v is the initial velocity

u is the initial velocity

a is the acceleration

t is the time

0= 20 -t

t=20 secs


s = ut +1/2(at∧2)

where s is the displacement of the object

u is the initial velocity

t is the time

v is the final velocity

a is the acceleration

s= 20 ×20 +(-1×20×20)/2

<u>s= 200 m</u>


3 0
3 years ago
Read 2 more answers
What is a small body that follows a highly elliptical orbit around the sun
melomori [17]
A Planet, such as (pluto)
4 0
3 years ago
Read 2 more answers
Other questions:
  • How as bohr's atomic model similar to Rutherford's model
    7·2 answers
  • The Sun keeps all of the planets orbiting it because _____.
    5·2 answers
  • A racetrack has the shape of an inverted cone, as the drawing shows. On this surface the cars race in circles that are parallel
    15·1 answer
  • Two points in a plane have polar coordinates (3.00 m, 20.0°) and (3.50 m, 140.0°). (a) Determine the Cartesian coordinates of th
    11·2 answers
  • A machine is applying a torque to rotationally accelerate a metal disk during a manufacturing process. An engineer is using a gr
    8·2 answers
  • Cho q1= 8.10 mũ -8C ; q2 = -8.10 mũ -8C . Đặt tại 2 điểm A và B cách nhau 6cm trong không khí . Xác định lực điện dung dịch lên
    11·1 answer
  • What is needed to start a chemical reaction
    12·2 answers
  • 6) If I were to drop a ball out of my car while I was traveling at a velocity of 25 m/s, and it underwent a
    14·2 answers
  • An object has a moving energy of 25 J. If I do 25 J of work on the object, how much energy does it have now?
    8·1 answer
  • A resistor, an inductor, and a capacitor are connected in series to an ac source. What is the phase angle between the voltages o
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!