Find the mass of C in the 2.657 g CO2:
(2.657 g CO2) / (44.01 g/mol) = 0.06037 mol CO2
Since each mole of CO2 also has 1 mole of C, this is equivalent to 0.06037 mol C.
Find the mass of H in the 1.089 g H2O:
(1.089 g H2O) / (18.02 g/mol) = 0.06043 mol H2O
Since 1 mol H2O has 2 mol H, this is equivalent to (0.06043)*2 = 0.1209 mol H.
Taking the ratio of H to C: 0.1209 / 0.06037 = 2.002 ~ 2
Therefore, the empirical formula of isobutylene is CH2.
Following chemical reaction is involved upon titration of Ca(OH)2 with HCl,
Ca(OH)2 + 2HCl ↔ CaCL2 + 2H2O
Above is an example of acid-base titration to generate salt and water. Here, H+ ions of acid (HCl) combines with OH- (ions) of base [Ca(OH)2] to generated H2O
Given,
concentration of HCl = 0.0199 M
Total volume of HCl consumed during titration = 16.08 mL = 16.08 X 10^(-3) L
∴, number of moles of H+ consumed = Molarity X Vol. of HCl (in L)
= 0.0199 X 16.08 X 10^(-3)
= 3.1999 X 10^-4 mol
Thus, total number of moles of [OH-] ions present initial = 3.1999 X 10-4 mol
So, initial conc. [OH-] ion = ![\frac{number of moles of [OH-]}{volume of solution (L)}](https://tex.z-dn.net/?f=%20%5Cfrac%7Bnumber%20of%20moles%20of%20%5BOH-%5D%7D%7Bvolume%20of%20solution%20%28L%29%7D%20)
=

= 0.03199 M
1. Atomic weight of fluorine
2. Number of proton and neutrons found in the nucleus of the element
3. And every number uniquely identifies each of the the elements
Liquid because 20 Celsius is 68 Fahrenheit<span />