1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lesechka [4]
2 years ago
8

What is the sum of the 10th square number and the 2nd cube number?

Mathematics
1 answer:
MakcuM [25]2 years ago
6 0

Answer:

100 + 27

127

bcoz 10th square no root is 10 and 2nd cube no root is 3

You might be interested in
Estimate the length of one side of a square floor, if the area is 320 square feet. Give the whole number that is closest to the
RSB [31]
Let us assume the length of a side of the square floor = x feet
Area of the square floor as given in the question = 320 square feet
Then
x^2 = 320
x^2 = (17.89)^2
Then
x = 17.89
   = 18 feet approx

From the above deduction, it can be easily concluded that the correct option among all the options that are given in the question is the second option or option "B".
3 0
3 years ago
How many unique triangles can be formed with two side lengths of 10 centimeters and one 40° angle?
r-ruslan [8.4K]

Answer:

  • Two unique triangles possible

Step-by-step explanation:

Given two sides of 10 cm and one 40° angle

<u>If we use these, we'll get isosceles triangle with:</u>

1. Included 40° angle.

<u>Then the other angles will be same and measure:</u>

  • (180° - 40°)/2 = 70°

2. Adjacent 40° angle. Then one of the angles must be 40° angle as opposite of 10 cm sides.

<u>The remaining angle will measure:</u>

  • 180° - 2*40° = 100°

There no more unique triangles possible, so the answer is two.

3 0
3 years ago
PLEASE HELP ME GUYS OR I WONT PASS <br>this calculus!!!!​
KonstantinChe [14]

Answer:

b.  \displaystyle \frac{1}{2}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Functions
  • Function Notation
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}<u> </u>

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                       \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

<em />\displaystyle H(x) = \sqrt[3]{F(x)}<em />

<em />

<u>Step 2: Differentiate</u>

  1. Rewrite function [Exponential Rule - Root Rewrite]:                                      \displaystyle H(x) = [F(x)]^\bigg{\frac{1}{3}}
  2. Chain Rule:                                                                                                        \displaystyle H'(x) = \frac{d}{dx} \bigg[ [F(x)]^\bigg{\frac{1}{3}} \bigg] \cdot \frac{d}{dx}[F(x)]
  3. Basic Power Rule:                                                                                             \displaystyle H'(x) = \frac{1}{3}[F(x)]^\bigg{\frac{1}{3} - 1} \cdot F'(x)
  4. Simplify:                                                                                                             \displaystyle H'(x) = \frac{F'(x)}{3}[F(x)]^\bigg{\frac{-2}{3}}
  5. Rewrite [Exponential Rule - Rewrite]:                                                              \displaystyle H'(x) = \frac{F'(x)}{3[F(x)]^\bigg{\frac{2}{3}}}

<u>Step 3: Evaluate</u>

  1. Substitute in <em>x</em> [Derivative]:                                                                              \displaystyle H'(5) = \frac{F'(5)}{3[F(5)]^\bigg{\frac{2}{3}}}
  2. Substitute in function values:                                                                          \displaystyle H'(5) = \frac{6}{3(8)^\bigg{\frac{2}{3}}}
  3. Exponents:                                                                                                        \displaystyle H'(5) = \frac{6}{3(4)}
  4. Multiply:                                                                                                             \displaystyle H'(5) = \frac{6}{12}
  5. Simplify:                                                                                                             \displaystyle H'(5) = \frac{1}{2}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

5 0
3 years ago
10yd 4yd what is the area of the shaded portion to the nearest hundredth l
WARRIOR [948]

Answer:

I don't understand the question. Pls is there any picture

7 0
3 years ago
Find j. 6 + 2(3j – 2) = 4(1 + j)
Sindrei [870]

Answer:

j=1

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
Other questions:
  • Given 2x² = -8, x is .
    8·1 answer
  • Bill brought 8 shirts, 6 pairs of shorts and 3 pairs of shoes to camp. How many different outfits consisting of a shirt, a pair
    11·1 answer
  • A coin is tossed 2 times. find the probability that all 2 tosses are tails
    15·1 answer
  • A 95% confidence interval for the mean number of television per American household is (1.15, 4.20). For each of the following st
    5·1 answer
  • Which of the lines below is parallel to a line with a slope of three and Y intercept at (0, 3)
    12·2 answers
  • Let F(x) = 2x2 + x - 3 and g(x) = x - 1. f(x) g(x)
    12·1 answer
  • Find the selling price of a 270% bicycle with a 24% markup
    6·1 answer
  • Please answer this im going to fail Rewrite the fraction as a decimal.
    6·1 answer
  • What does 1.20 mean in this situation?
    14·2 answers
  • Plz help been stuck on this for awhile
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!