1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nesterboy [21]
3 years ago
14

Which statement best describes the difference between a substance with a pH of 3.0 and a substance with a pH of 6.0?

Physics
1 answer:
satela [25.4K]3 years ago
7 0

The statement best describes the difference between a substance with a pH of 3.0 and a substance with a pH of 6.0 is - The substance with the lower pH has 1,000 times as many hydrogen ions per volume of water.

pH is the scale or measure for the substance about its acidic or basic strength. It ranges from 0 to 6.9 which is acidic and 7.1 to 14 which is basic.

Acidic substance has high concentration of Hydrogen ions whereas, basic substance has low concentration of hydrogen ions, however for the OH⁻ ions it is reverse.

  • Concentration of hydrogen ions is inversely related to its pH
  • More hydrogen ions present, the lower the pH
  • The fewer hydrogen ions, the higher the pH We know,

pH = -log(H^{+}) then,  

=> 3 = -log (H^{+})

=> H^{+} =  (for pH = 3)  

=> pH = -log(H^{+})

=> 6 = -log (H^{+})

=> H^{+} = 10^{-6} (for pH = 6)

 Thus, The substance with the lower pH (3) has 1000 times as many hydrogen ions per volume of water.

Learn more about pH scale:

brainly.com/question/1596421

You might be interested in
A sound wave travels through water. What best describes the direction of the water particles?
balu736 [363]

Answer:

In water, the particles are much closer together, and they can quickly transmit vibration energy from one particle to the next.

A water wave is an example of a transverse wave. As water particles move up and down, the water wave itself appears to move to the right or left.

7 0
3 years ago
Assume the radius of an atom, which can be represented as a hard sphere, is r = 1.95 Å. The atom is placed in a (a) simple cubic
Nuetrik [128]

Answer:

(a) A = 3.90 \AA

(b) A = 4.50 \AA

(c) A = 5.51 \AA

(d) A = 9.02 \AA

Solution:

As per the question:

Radius of atom, r = 1.95 \AA = 1.95\times 10^{- 10} m

Now,

(a) For a simple cubic lattice, lattice constant A:

A = 2r

A = 2\times 1.95 = 3.90 \AA

(b) For body centered cubic lattice:

A = \frac{4}{\sqrt{3}}r

A = \frac{4}{\sqrt{3}}\times 1.95 = 4.50 \AA

(c) For face centered cubic lattice:

A = 2{\sqrt{2}}r

A = 2{\sqrt{2}}\times 1.95 = 5.51 \AA

(d) For diamond lattice:

A = 2\times \frac{4}{\sqrt{3}}r

A = 2\times \frac{4}{\sqrt{3}}\times 1.95 = 9.02 \AA

6 0
3 years ago
A disk rotates about its central axis starting from rest and accelerates with constant angular acceleration. At one time it is r
atroni [7]

(a) 2.79 rev/s^2

The angular acceleration can be calculated by using the following equation:

\omega_f^2 - \omega_i^2 = 2 \alpha \theta

where:

\omega_f = 20.0 rev/s is the final angular speed

\omega_i = 11.0 rev/s is the initial angular speed

\alpha is the angular acceleration

\theta=50.0 rev is the number of revolutions made by the disk while accelerating

Solving the equation for \alpha, we find

\alpha=\frac{\omega_f^2-\omega_i^2}{2d}=\frac{(20.0 rev/s)^2-(11.0 rev/s)^2}{2(50.0 rev)}=2.79 rev/s^2

(b) 3.23 s

The time needed to complete the 50.0 revolutions can be found by using the equation:

\alpha = \frac{\omega_f-\omega_i}{t}

where

\omega_f = 20.0 rev/s is the final angular speed

\omega_i = 11.0 rev/s is the initial angular speed

\alpha=2.79 rev/s^2 is the angular acceleration

t is the time

Solving for t, we find

t=\frac{\omega_f-\omega_i}{\alpha}=\frac{20.0 rev/s-11.0 rev/s}{2.79 rev/s^2}=3.23 s

(c) 3.94 s

Assuming the disk always kept the same acceleration, then the time required to reach the 11.0 rev/s angular speed can be found again by using

\alpha = \frac{\omega_f-\omega_i}{t}

where

\omega_f = 11.0 rev/s is the final angular speed

\omega_i = 0 rev/s is the initial angular speed

\alpha=2.79 rev/s^2 is the angular acceleration

t is the time

Solving for t, we find

t=\frac{\omega_f-\omega_i}{\alpha}=\frac{11.0 rev/s-0 rev/s}{2.79 rev/s^2}=3.94 s

(d) 21.7 revolutions

The number of revolutions made by the disk to reach the 11.0 rev/s angular speed can be found by using

\omega_f^2 - \omega_i^2 = 2 \alpha \theta

where:

\omega_f = 11.0 rev/s is the final angular speed

\omega_i = 0 rev/s is the initial angular speed

\alpha=2.79 rev/s^2 is the angular acceleration

\theta=? is the number of revolutions made by the disk while accelerating

Solving the equation for \theta, we find

\theta=\frac{\omega_f^2-\omega_i^2}{2\alpha}=\frac{(11.0 rev/s)^2-0^2}{2(2.79 rev/s^2)}=21.7 rev

4 0
3 years ago
Which are characteristics of electromagnetic waves?check all that apply.
emmainna [20.7K]

Correct choices are marked in bold:

travel in straight lines and can bounce off surfaces  --> TRUE, normally electromagnetic waves travel in straight lines, however they can be reflected by objects, bouncing off their surfaces

travel through space at the speed of light  --> TRUE, all electromagnetic waves in space (vacuum) travel at the speed of light, c=3\cdot 10^8 m/s)

travel only through matter  --> FALSE; electromagnetic waves can also travel through vacuum

travel only through space  --> FALSE, electromagnetic waves can also travel through matter

can bend around objects  --> TRUE, this is what happens for instance when diffraction occurs: electromagnetic waves are bended around obstacles or small slits

move by particles bumping into each other  --> FALSE, electromagnetic waves are oscillations of electric and magnetic fields, so no particles are involved

move by the interaction between an electric field and a magnetic field --> TRUE, electromagnetic waves consist of an electric field and a magnetic field oscillating in a direction perpendicular to the direction of motion of the wave

8 0
3 years ago
Read 2 more answers
Hi! I have a word bank I need help with please!<br> I have the questions as an attachment
Katena32 [7]
Scott needs to determine the density of a metallic rod. First, he should determine the mass of his sample on the laboratory balance. Second, he should measure the volume of his sample by water displacement. Finally, he can calculate the density by dividing mass/volume. 
Hope this helped ;)
4 0
3 years ago
Other questions:
  • What is the difference between polarized light and unpolarized light?
    14·1 answer
  • A metal conduit will be used as a pathway for wiring through a concrete block. The conduit is a 4 foot long rod with an outer di
    13·2 answers
  • 2. A car going 35 km/hr takes 23.0 s to come to a stop at the red light. What is it's
    5·1 answer
  • Identify the parts of the wave below. Please help! I need it quite soon!
    14·1 answer
  • A cylinder contains 3.0 L of oxygen at 310 K and 2.5 atm. The gas is heated, causing a piston in the cylinder to move outward. T
    9·1 answer
  • A point charge Q is located a distance d away from the center of a very long charged wire. The wire has length L &gt;&gt; d and
    11·1 answer
  • CHALLENGE
    8·2 answers
  • A hiker leaves her camp and walks 3.5 km in a direction of 55° south of west to the lake. After a short rest at the lake, she hi
    13·1 answer
  • Find the direction and magnitude of the net force exerted on the point charge q3 in the figure. Let q= +2.4 μC and d= 33cm.
    11·2 answers
  • Calculate The pressure produced by a force of 392 N acting on an area of 8.0 m^2
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!