Answer:
Increasing the concentration of the reagents makes the collision between two molecules of the reagents more likely, thereby increasing the probability that the reaction will occur between these reagents.
As for the relationship between concentration and volume, density also comes into play, a higher volume, lower molarity and also lower concentration.
The pressure when increasing could generate a closer approach between the particles, therefore generating an increase in the reaction speed.
Pressure and volume are related but inversely proportional, therefore if the volume increases the pressure decreases and so on.
the reaction rate increases as the contact surface area increases. This is due to the fact that more solid particles are exposed and can be reached by reactant molecules.
A perfect reaction where the collision is promoted and the reaction speed advances is with the presence of a solvent, with an increase in pressure and a decrease in volume, with an increase in the exposure of the surface, with the presence of a catalyst, with increasing temperature and with increasing entrance
Explanation:
The reaction rate is defined as the amount of substance that is transformed into a certain reaction per unit of volume and time. For example, the oxidation of iron under atmospheric conditions is a slow reaction that can take many years but over time it is oxidized sooner or later by the oxygenation of its surface layer, but the combustion of butane in a fire is a reaction that happens in fractions of seconds, giving rise to an exothermic reaction with products such as CO2 and H2O
The question requires us to explain the differences in radii of neutral atoms, cations and anions.
To answer this question, we need to keep in mind that a neutral atom presents the same number of protons (positive particles) and electrons (negative particles). Another important information is that the protons are located in the nucleus of the atom, while the electrons are around the nucleus. Also, there is an electrostatic force between protons and electrons, which means that they the protons tend to attract the electrons to the nucleus.
While a neutral atom presents the same number of protons and electrons, a cation is an ion with positive charge, which means it has lost one or more electrons. In a cation, the balance between protons and electrons doesn't exist anymore: now, there is more positive than negative charge (more protons than electrons), and the overall attractive force that the protons have for the electrons is increased. As a result, the electrons stay closer to the nucleus and the radius of a cation is smaller than the neutral atom from which it was derived.
On the other side, anions present negative charge, which means they have received electrons. Similarly to cations, the balance between protons and electrons doesn't exist anymore, but in this case, there are more electrons than protons. In an anion, the overall attractive force that the protons have for the electrons is decreased. As a result, the electrons are "more free" to move and, as they are not so attracted to the nucleus, they tend to stay farther from the positive nucleus compared to the neutral atom - because of this, the radius of an anion is larger than the neutral atom from which it was derived.
Gasoline use contributes to air pollution
Gasoline is a toxic and highly flammable liquid. The vapors given off when gasoline evaporates and the substances produced when gasoline is burned (carbon monoxide, nitrogen oxides, particulate matter, and unburned hydrocarbons) contribute to air pollution. Burning gasoline also produces carbon dioxide, a greenhouse gas.
Answer:
98.8
Explanation:
CsF + XeF6 --> CsXeF7
37.8g ................. ?g
37.8g CsF x (1 mol CsF / 151.9g CsF) x (1 mol CsXeF7 / 1 mol CsF) x (397.2g CsXeF7 / 1 mol CsXeF7) = 98.8g CsXeF7 .......... to three significant digits