Answer:
<em>Force of gravity may not affect a pendulum during its equilibrium state</em>. But the gravity can affect the pendulum when a force occurs in any direction of the bob connected to the cord that makes a swing sideways. The gravity of pendulum never stops, it always accelerates. So the gravity affects the pendulum acceleration and speed.
<em>Similarly the tension in the cord will not affect the pendulum</em><em> </em>but if change in the length of the pendulum while keeping other factors constant changes the length of the period of pendulum. longer pendulum swings with lower frequency than shorter pendulums.
Material medium electric waves
The sample appears to have gone through 3 half-lives
1st half life: 1000 to 500 g
2nd half life: 500 to 250 g
3rd half life: 250 to 125 g
The duration of a half-life, therefore, can be inferred to be 66 ÷ (3) = 22 days.
After a 4th half life, there will be 125÷2= 62.5 g.
At this point, an additional 22 days will have passed, for a total of 88 days.
Answer is C.
To solve this problem we will begin by finding the necessary and effective distances that act as components of the centripetal and gravity Forces. Later using the same relationships we will find the speed of the body. The second part of the problem will use the equations previously found to find the tension.
PART A) We will begin by finding the two net distances.

And the distance 'd' is



Through the free-body diagram the tension components are given by


Here we can watch that,

Dividing both expression we have that,

Replacing the values,


PART B) Using the vertical component we can find the tension,



