Answer:
8 N North.
Explanation:
Given that,
One force has a magnitude of 10 N directed north, and the other force has a magnitude of 2 N directed south.
We need to find the magnitude of net force acting on the object.
Let North is positive and South is negative.
Net force,
F = 10 N +(-2 N)
= 8 N
So, the magnitude of net force on the object is 8 N and it is in North direction (as it is positive). Hence, the correct option is (d) "8N north".
Work Done = Force x Distance Moved
Work Done = 25 x 15 = 375 Joules
Answer:
W = 1.06 MJ
Explanation:
- We will use differential calculus to solve this problem.
- Make a differential volume of water in the tank with thickness dx. We see as we traverse up or down the differential volume of water the side length is always constant, hence, its always 8.
- As for the width of the part w we see that it varies as we move up and down the differential element. We will draw a rectangle whose base axis is x and vertical axis is y. we will find the equation of the slant line that comes out to be y = 0.5*x. And the width spans towards both of the sides its going to be 2*y = x.
- Now develop and expression of Force required:
F = p*V*g
F = 1000*(2*0.5*x*8*dx)*g
F = 78480*x*dx
- Now, the work done is given by:
W = F.s
- Where, s is the distance from top of hose to the differential volume:
s = (5 - x)
- We have the work as follows:
dW = 78400*x*(5-x)dx
- Now integrate the following express from 0 to 3 till the tank is empty:
W = 78400*(2.5*x^2 - (1/3)*x^3)
W = 78400*(2.5*3^2 - (1/3)*3^3)
W = 78400*13.5 = 1058400 J
Explanation:
Below is an attachment containing the solution.