Answer:
The value is 
Explanation:
From the question we are told that
The diameter of the pupil is 
The distance of the page from the eye 
The wavelength is 
The refractive index is 
Generally the minimum separation of adjacent dots that can be resolved is mathematically represented as
![y = [ \frac{1.22 * \lambda }{d_p * n_r } ]* d](https://tex.z-dn.net/?f=y%20%20%3D%20%5B%20%5Cfrac%7B1.22%20%2A%20%20%5Clambda%20%7D%7Bd_p%20%2A%20n_r%20%7D%20%5D%2A%20d)
![y = [ \frac{1.22 * 500 *10^{-9} }{4.2 *10^{-3} * 1.36} ]* 0.29](https://tex.z-dn.net/?f=y%20%20%3D%20%5B%20%5Cfrac%7B1.22%20%2A%20%20500%20%2A10%5E%7B-9%7D%20%7D%7B4.2%20%2A10%5E%7B-3%7D%20%2A%201.36%7D%20%5D%2A%200.29)

Answer:
True
Explanation:
Heavier objects (objects with more mass) are more difficult to move and stop. Heavier objects (greater mass) resist change more than lighter objects. Example: Pushing a bicycle or a Cadillac, or stopping them once moving. The more massive the object (more inertia) the harder it is to start or stop.
Diameter = 0.170 meter
Circumference = 0.170 π meters
530 rpm = 530 circumferences / minute
= (530 x 0.170 π meters) / minute
= 283.06 meter.minute
= 4.72 meters/second
Answer:
915 Hz
Explanation:
The observed frequency from a sound source is given as
f₀ = f [(v + v₀)/(v+vₛ)]
where
f₀ = observed frequency of the sound by the observer = ?
f = actual frequency of the sound wave = 983 Hz
v = actual velocity of the sound waves = 343 m/s
vₛ = velocity of the source of the sound waves = 55.9 m/s
v₀ = velocity of the observer = 28.4 m/s
f₀ = 983 [(343+28.4)/(343+55.9)]
f₀ = 915.2 Hz = 915 Hz
Answer:
The correct answer is "4.443 sec".
Explanation:
Given:
Mass of child,
= 34 kg
Mass of swing,
= 18 kg
Length,
= 4.9 m
The time period of pendulum will be:
T = 
= 
=