Equations of the vertical launch:
Vf = Vo - gt
y = yo + Vo*t - gt^2 / 2
Here yo = 35.0m
Vo is unknown
y final = 0
t = 4.00 s
and I will approximate g to 10m/s^2
=> 0 = 35.0 + Vo * 4 - 5 * (4.00)^2 => Vo = [-35 + 5*16] / 4 = - 45 / 4 = -11.25 m/s
The negative sign is due to the fact that the initial velocity is upwards and we assumed that the direction downwards was positive when used g = 10m/s^2.
Answer: 11.25 m/s
Answer:
10miles/second
Explanation:
Change in velocity of the bird is expressed as the difference between the final velocity and initial velocity of the body.
Change in velocity = Final velocity - initial velocity
Since the bird takes off from the tree, the initial velocity of the bird = 0miles/sec
Final velocity = 10miles/secs
Change in velocity = 10-0
Change in velocity = 10miles/second
Kinetic energy is formed when the object is in motion.
Potential energy is the energy that is formed relative to others.
One of the example is Corn flour factory.
Corn turned into flour by a windmill that moved by the waterfall. Movement of the mill is relative to the power given by waterfall (potential energy) and the spinning crushes the corn into flour (kinetic energy)
Answer:
The maximum value of the induced magnetic field is
.
Explanation:
Given that,
Radius of plate = 30 mm
Separation = 5.0 mm
Frequency = 60 Hz
Suppose the maximum potential difference is 100 V and r= 130 mm.
We need to calculate the angular frequency
Using formula of angular frequency

Put the value into the formula


When r>R, the magnetic field is inversely proportional to the r.
We need to calculate the maximum value of the induced magnetic field that occurs at r = R
Using formula of magnetic filed

Where, R = radius of plate
d = plate separation
V = voltage
Put the value into the formula


Hence, The maximum value of the induced magnetic field is
.