so as this ant moves
5 cm every second you multiply 5 by 120 (60 per minute as there are 60 seconds in a minute)
this is 600 cm
or
6 meters
Answer:
U = √Rg/sin2θ
Explanation:
Using the formula for "range" in projectile motion to derive the average speed before the ball hits the ground.
Range is the distance covered by the body in the horizontal direction from the point of launch to the point of landing.
According to the range formula,
R = U²sin2θ/g
Cross multiplying we have;
Rg = U²sin2θ
Dividing both sides by sin2θ, we have;
U² = Rg/sin2θ
Taking the square root of both sides we have;
√U² = √Rg/sin2θ
U = √Rg/sin2θ
Therefore, his average speed if he is to meet the ball just before it hits the ground is √Rg/sin2θ
Answer:
The magnetic field through the wire must be changing
Explanation:
According to Faraday's law, the induced emf, ε in a metallic conductor is directly proportional to the rate of change of magnetic flux,Φ through it. This is stated mathematically as ε = dΦ/dt.
Now for the wire, the magnetic flux through it is given by Φ = ABcosθ where A = cross-sectional area of wire, B = magnetic field and θ = angle between A and B.
So, dΦ/dt = dABcosθ/dt
Since A and B are constant,
dΦ/dt = ABdcosθ/dt = -(dθ/dt)ABsinθ
Since dθ/dt implies a change in the angle between A and B, since A is constant, it implies that B must be rotating.
So, <u>for an electric current (or voltage) to be produced in the wire, the magnetic field must be rotating or changing</u>.
It increases. Mercury takes 88 days to orbit the sun once. The Earth takes a year. Pluto takes 248 years.
Explanation :
The heating curve shows how water changes from one state of matter to another based on temperature and the addition or removal of heat over time.
Initially, ice is heated until its temperature reaches
and changes to liquid state.
From the attached graph it is clear that until
the temperature will rise steadily. Here, the liquid begins to vaporize. Vaporization is the state of matter at which liquid state changes to the gaseous state.
So, E is the point which shows the gaseous state.