Answer:
V = 0.248 L
Explanation:
To do this, use the following equation:
P1*V1/T1 = P2*V2/T2
This equation is used to find a relation between two differents conditions of a same gas, which is this case. From this equation we can solve for V2.
Solving for V2:
V2 = P1*V1*T2/T1*P2
Temperature must be at Kelvin, so, we have to sum the temperature 273 to convert it in K.
Replacing the data we have:
V2 = 1 * 4.91 * (-196+273) / 5.2 * (20+273)
V2 = 378.07 / 1523.6
V2 = 0.248 L
The acceleration due to gravity near the surface of the planet is 27.38 m/s².
<h3>
Acceleration due to gravity near the surface of the planet</h3>
g = GM/R²
where;
- G is universal gravitation constant
- M is mass of the planet
- R is radius of the planet
- g is acceleration due to gravity = ?
g = (6.626 x 10⁻¹¹ x 2.81 x 5.97 x 10²⁴) / (6371 x 10³)²
g = 27.38 m/s²
Thus, the acceleration due to gravity near the surface of the planet is 27.38 m/s².
Learn more about acceleration due to gravity here: brainly.com/question/88039
#SPJ1
The region where warm and cold air masses meet is called a front
Answer:
If one side of the train is positive and the other is negative they will attract if they are the same then they will repel.
Explanation:
If both are positive they will repel if both are negative they will repel and if they are opposites they will attract.