According to the Bernoulli's equation,the pressure difference between the wide and narrow ends of the pipe is given by

Here,
is the velocity of water through wide ends of cylindrical pipe and
is the velocity of water through narrow ends of cylindrical pipe.
Given, 
Now from equation continuity,
.
Here,
and
are cross- sectional areas of wide and narrow ends of cylindrical pipe.
As pipe is circular, so
.
At the second point, the diameter is halved, which means the radius is also halved. Therefore,


Substituting these values with the density of water is
in pressure difference formula we get.

Answer:
Time = 0.55 s
Height = 8.3 m
Explanation:
The ball is dropped and therefore has an initial velocity of 0. Its acceleration, g, is directed downward in the same direction as its displacement,
.
The dart is thrown up in which case acceleration, g, acts downward in an opposite direction to its displacement,
. Both collide after travelling for a time period, t. Let the height of the dart from the ground at collision be
and the distance travelled by the ball measured from the top be
.
It follows that
.
Applying the equation of motion to each body (h = v_0t + 0.5at^2),
Ball:
(since
.)

Dart:
(the acceleration is opposite to the displacement, hence the negative sign)

But




The height of the collision is the height of the dart above the ground,
.




Answer:
a)
n=sin i/sin r
n= -0.305/-0.428
n=0.713
b)
sin c=1/n
sin c=1/0.713
sin c= 1.403
c=sin⁻¹(1.403)
c= 40.842°
Explanation:
i hope it will be helpful
plzzz mark as brainliest
Answer:

Explanation:
Given data
Speed of jet Vjet=1190 km/h
Speed of prop driven Vprop=595 km/h
Height of jet 7.5 km
Height of prop driven transport 3.8 km
Density of Air at height 10 km p7.8=0.53 kg/m³
Density of air at height 3.8 km p3.8=0.74 kg/m³
The drag force is given by:

The ratio between the drag force on the jet to the drag force on prop-driven transport is then given by:
