Answer: electric field
Explanation: when a charge is placed in space, it alters the space around it by creating an electric field.
This electric field has the ability to exert a force (f) on any test charge(q) placed within this vicinity.
This is the reason why a charge can either attract or repel another charge.
Answer: A
Out of the screen
Explanation:
Using right hand rule, the magnetic force is perpendicular to the plane form by the magnetic field of a charged particle and its speed. Which will be into the screen.
But the negative charged particle moves in the opposite direction of the positive charged particle. Therefore, the magnetic force direction will be out of the screen
Answer:
The induced emf in the loop is 
Explanation:
Given that,
Length of the wire, L = 1.22 m
It changes its shape is changed from square to circular. Then the side of square be its circumference, 4a = L
4a = 1.22
a = 0.305 m
Area of square, 
Circumference of the loop,

Area of circle,

The induced emf is given by :

So, the induced emf in the loop is 
Answer:

Explanation:
Force can be found by multiplying the mass by the acceleration.

The mass of the roller coaster is 2000 kilograms and the acceleration is 2 meters per second squared.

Substitute the values into the formula.

Multiply.

- 1 kg*m/s² is equal to 1 N
- Therefore our answer of 4000 kg*m/s² is equal to 4000 Newtons

The net force acting on the roller coaster is <u>4000 Newtons.</u>
<u>Answer:</u>
<em>The correct equation for measuring the average microscopic weight for 3 isotopes is multiply the rate of abundance by each weight and add them.</em>
<u>Explanation:</u>
To calculate the average microscopic mass of element using weights and relative abundance we have to follow the following steps.
- Take the correct weight of each isotope (that will be in decimal form)
- Multiply the weight of each isotope by its abundance
- Add each of the results together.
<em>This gives the required average microscopic weight of the three isotopes.</em>