Raised temperature, decreased volume.
Temperature and Pressure are directly related, when volume increases so does the your pressure.
Volume and Pressure are indirectly related. When volume decreases, your pressure will increase.
Answer:
The discipline of Earth and space science is concerned with the study of the planets and stars is
A. Astronomy
Explanation:
A.Astronomy:
'Astron' means stars and 'nomos' means laws. So astronomy is the study of stars , planets and space
B.
biology
It is derived from Greek word : 'Bios' means life and 'logos' means study.
Biology is study of life, living organism ,structure of organisms,evolution
C.Geology
It is the earth science which includes the study of rocks and solid earth, what it is made of and how it has changed .
D. Oceanography
It is the study of physical and biological aspects of oceans
Answer:
The balanced equation tells us that 1 mole of Zn will produce 1 mole of H2.
1.566 g Zn x (1 mole Zn / 65.38 g Zn) = 0.02395 moles Zn
0.02395 moles Zn x (1 mole H2 / 1 mole Zn) = 0.02395 moles H2 produced
Now use the ideal gas law to find the volume V.
P = 733 mmHg x (1 atm / 760 atm) = 0.964 atm
T = 21 C + 273 = 294 K
PV = nRT
V = nRT/ P = (0.02395 moles H2)(0.0821 L atm / K mole)(294 K) / (0.964 atm) = 0.600 L
The reaction of iron (III) oxide and aluminum is initiated by heat released from a small amount "starter mixture". This reaction is an oxidation-reduction reaction, a single replacement reaction, producing great quantities of heat (flame and sparks) and a stream of molten iron and aluminum oxide which pours out of a hole in the bottom of the pot into sand.
The balanced chemical equation for this reaction is:
2 Al(s) + Fe2O3(s) --> 2Fe(s) + Al2O3(s) + 850 kJ/mol
Curriculum Notes
This chemical reaction can be used to demonstrate an exothermic reaction, a single replacement or oxidation-reduction reaction, and the connection between ∆H calculated for this reaction using heats of formation and Hess' Law and calculating ∆H for this reaction using qrxn = mc∆T and the moles of limiting reactant. This reaction also illustrates the role of activation energy in a chemical reaction. The thermite mixture must be raised to a high temperature before it will react.
To determine how much thermal energy is released in this reaction, heats of formation values and Hess' Law can be used.
By definition, the deltaHfo of an element in its standard state is zero.
2 Al(s) + Fe2O3(s) --> 2Fe (s) + Al2O3 (s)
The deltaH for this reaction is the sum of the deltaHfo's of the products - the sum of the deltaHfo's of the reactants (multiplying each by their stoichiometric coefficient in the balanced reaction equation), i.e.:
deltaHorxn = (1 mol)(deltaHfoAl2O3) + (2 mol)(deltaHfoFe) - (1 mol)(deltaHfoFe2O3) - (2 mol)(deltaHfoAl)
deltaHorxn = (1 mol)(-1,669.8 kJ/mol) + (2 mol)(0) - (1 mol)(-822.2 kJ/mol) - (2mol)(0 kJ/mol)
deltaHorxn = -847.6 kJ
The melting point of iron is 1530°C (or 2790°F).
MARK ME BRAINLIEST
The last intermediate in citric acid cycle is Oxaloacetic acid.
<h3>What is Citric Acid Cycle?</h3>
Organic molecule HOC(CO2H)(CH2CO2H)2 is the chemical formula for citric acid. It is a weak organic acid that is colorless. Citrus fruits naturally contain it. It is a biochemical intermediary in the citric acid cycle, which is a component of all aerobic organisms' metabolism.
Every year, more than two million tons of citric acid are produced. It is frequently used as a flavoring, an acidifier, and a chelating agent.
Citrates, which include salts, esters, and the polyatomic anion present in solution, are derivatives of citric acid. Trisodium citrate is an example of the former; triethyl citrate is an example of an ester.
Learn more about citric acid with the help of the given link:
brainly.com/question/15582668
#SPJ4