Missing question:
Nitrogen: <span>2.0 L; </span>1.0 atm; 25°<span>C.
Oxygen: 3</span>.0 L; 2.0 atm; 25°C.
<span>When the valve between the two containers is opened, nitrogen gas moves from one container to another container and gases are mixed together, total volume of nitrogen is than:
V(nitrogen) = 2,0 L + 3,0 L = 5,0 L.</span>
Answer: 4 molL-1
Explanation:
Detailed solution is shown in the image attached. The number of moles of NaCl is first obtained. Since the molarity must be in units of molL-1, the volume is divided by 1000 and the formula stated in the solution is applied and the answer is given to one significant figure.
Answer:
The water lost is 36% of the total mass of the hydrate
Explanation:
<u>Step 1:</u> Data given
Molar mass of CuSO4*5H2O = 250 g/mol
Molar mass of CuSO4 = 160 g/mol
<u>Step 2:</u> Calculate mass of water lost
Mass of water lost = 250 - 160 = 90 grams
<u>Step 3:</u> Calculate % water
% water = (mass water / total mass of hydrate)*100 %
% water = (90 grams / 250 grams )*100% = 36 %
We can control this by the following equation
The hydrate has 5 moles of H2O
5*18. = 90 grams
(90/250)*100% = 36%
(160/250)*100% = 64 %
The water lost is 36% of the total mass of the hydrate
I think answer should be the last option I hope this helps let me know if it’s correct thanks
The density of an object or quantity of matter is its mass divided by its volume.